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1 Hilbert spaces

1.1
Let H be a complex vector space equipped with a scalar product denoted by (:|-), so (H,(:|-)) is a
unitary space. Every scalar product (-|-) defines a norm || - || by

Jz)? £ (z]z) « € H.
Definition 1.1.1 A complete unitary space is called a Hilbert space.

It will be usefull to recall the two following inequalities:
a) Schwarz inequality

Ve,y € H |(zly)® < (z]2)(yly);

b) Minkowski inequality
Ve,ye H |z +y| <zl + [yl

1.2 Examples of Hilbert spaces
a) C™ with the standard scalar product:

n
df N -
(zlw) = E Ziw; Yz=(z1,...,%2n),w = (w1,...,wy) € C;
i=1

P4 {{an}CC,nEN:Z|an|2 <OO}7

with the scalar product given by:

df _
c) L?(R™,d)\), where d) is the Lebesgue measure, with the standard scalar product:

(Flp) = | F@g@d@),  f.g € LR, dN).



1.3

Definition 1.3.1 a) A Hilbert space is called separable if there exists a countable set which is dense
in this space or, equivalently, this space has a countable basis.

b) Two vectors x,y € H are called orthogonal if (xz|y) = 0; we denote it by x L y.

c) A set in a Hilbert space is called orthogonal if any two elements of this set are orthogonal.

d) If the norm of any element of an orthogonal set is one, this set is called orthonormal.

e) An orthonormal (o.n.) basis of a Hilbert space is any complete orthonormal set.

1.4

Proposition 1.4.1 If H, and Hs are Hilbert spaces, we have a Hilbert space structure on Hy X Hy
given by:
df
((x,y)l(x’,y’))H1XH2 = (w|xl)H1 + (y|y/)Hz V(m,y), (ac/,y/) € Hy x Hs.

O

Definition 1.4.1 The Hilbert space Hy x Ho with the scalar product defined above is called a direct
sum of Hilbert spaces and we denote it by Hy ® Hs.

Proposition 1.4.2 A scalar product as a function (-|-) : H x H — C is continuous.

Proof
If ,, — = and y,, — y, then {z,}, as a convergent sequence is bounded.

[(@nlyn) — (2ly) = (@aly) + (aly)] <

< (@nlyn —y) + (20 — zfy)| <
< Mljyn = yll + lyllllzn — .

1.5

Proposition 1.5.1 If {e,}nen is an o.n. basis and {t,} € 1%, the series Y., tne, is convergent and

1D taeall = (Z Itn|2> ~ (1)

Proof
Let Sy 4 25:1 tnen, then
N
HSN - SM||2 = Z tnen”2 =
n=M+1
N
= (tM+1€M+1 + ...+ tNeN|t]M+leM+1 + ...+ tNeN) = Z |tn|2.
n=M+1

Since the series Y, [t,|? is convergent, the sequence {Sy} is Couchy, so it is convergent.
Since the scalar product is continuous, we have

<Z tnen‘ Z tmem> = Z 2?ntm(en‘em) = Z |tn|2~
n m n,m n



Proposition 1.5.2 If {e,} is an o.n. basis, x € H and ty, 4 (enl|x), then
a) {t,} € 1%

b)x=>", entn;

c) =) = 32, [tnl*.

1.6 Example. Fourier series
Let us consider L%([0, 27]) with a scalar product given by

dfl 2T
e TN

(flg)
The family of functions defined by
ex(N) L e kez,
form an orthonormal set and we shall show that it is an o.n. basis:

Let as assume that there exists f € L?([0,27]) such that (f|f) =1 and (ex|f) =0 Vk € Z. Then we
have

27
o=@mziée%vwwj

or N
= / > axe ™ f(N)dA =0 VN € N,Vay € C.
0 k=—nN

Inasmuch as the family of functions of the form Ef:;f N are” " fulfil the assumptions of the Stone—
Weierstrass theorem on a circle, so by this theorem f(A) = 0, which is contradiction. O
Now let as consider the consequence of the Proposition 1.5.2:

1 27 )
fer?(o,2r]) = tp=— e A F(N)d,
271' 0
moreover 9
1 ™ >
— A [2dA = tel?
27 o |F(V)] k}m\ kl%

finally we obtain the Fourier series
o0
f(>\) _ Z tk@ikA,
k=—oc0

which means that
1 27 N )
F) = D tee™PdA — 0

2
0 k=—N

if N — oo.

2 Subspaces

2.1

Definition 2.1.1 A vector subspace F' of a Hilbert space H is closed if F' is closed in the topology
generated by the scalar product in H.



2.2
Definition 2.2.1 Let G be any subset of H, then

GrL{reH:Wyed (z)y) =0}

Proposition 2.2.1 Let G be any subset of H, then
a) G+ is a closed subspace;

b) G C G+,

2.3

Theorem 2.3.1 (on the orthogonal projection (Beppo-Levi)) If F' is a closed subspace of H
and x € H, then

a)r =z +2x1, wherexy € F, x, € Ft;

b) this decomposition is unique.

Proof
a) Let {e,} be an o.n. basis in F' and let

7| d:fZ(enkv)en and xJ_CIfo—a:‘|.

n

It is enough to show that z, € F*:
(emlz L) = (em|z) — (€m] Z(en|x)en) =0.
b) Let # =z + 21 and = 2| + 2/, then

Faxh—xH:xJ_—xﬁ_eFL = zj -2 =0.

O
Corollary 2.3.1 If F is a closed subspace, then F++ = F.
Proof
It is enough to show that F1+ C F. Let x € F**, then by the Theorem 2.3.1 we have
T=x|+TL $H€F,:L'L€FL,
therefore
0=(zlzr) = (z)]aL) + (zr|zL),
which gives
(xi|lzl)=0 = =z, =0 = zekF
O

24

Proposition 2.4.1 a) G+ is the smallest closed subspace containing the set G.
b) Let F be a subspace, then F is dense if and only if F+ = {0}.



3 Linear functionals

3.1
Definition 3.1.1 A linear (antilinear) functional is any linear (antilinear) map 1 : H — C.

Proposition 3.1.1 A linear functional l is continuous if and only if

Je>0Vee H |l(x)] <c|x].

3.2

Theorem 3.2.1 (Frechet, Riesz) For every continuous linear functional I there exists a vector y €
H such that
l(z) = (y|z) Vz e H.

Proof
Let {e,,} be an o.n. basis in H. First we shall show, that the series

Z @en

is convergent:

Z ‘l(en)‘g = Zl(en)l(en) = l(zmen) <

hence

Now we can put

and calculate

m

O

Remark 3.2.1 It is very easy to formulate an analog of this theorem for continuous antilinear func-
tionals.



4 Barrelled spaces

4.1
Definition 4.1.1 A subset Q C H is called absolutely convex if
Yo,y €Q Vo, €C (o +[8* < 1) = (ax+ By € Q).
Definition 4.1.2 Q C H is called absorbing if |J,-, nQ = H.
Definition 4.1.3 A closed, absolutely convex, and absorbing set is called a barrel.

Definition 4.1.4 A topological vector space is called barrelled if every barrel is a neighbourhood of
zero.

Proposition 4.1.1 A Hilbert space is barrelled.

4.2
Proposition 4.2.1 Let R be a subset in H such that
Ve H 3M >0 Vy e R |(z]y)| < M.

Then
N >0 Yy € R |y|| < N.

Proof

Let Ro Y {z€ H:Vy € R |(z|y)] <1}. Tt is easy to see that R is closed and absolutely convex. We
shall show that it is absorbing:

If x € H, then ﬁ:c € R°. Thus x € MR° C nR° for some n € N.

Hence R? is a barrel, so it is a neighbourhood of zero i.e. there exists 7 > 0 such that the closed ball
K(0,7) C R°.

Let y € R. Since ||ﬁ\| =r, ﬁ € R°, which gives
Y

[l =rllyll <1,

[yl

therefore

S| =

Iyl <

5 Bounded operators

5.1

Definition 5.1.1 A linear map A : Hy — Hs between two Hilbert spaces is called a bounded operator

if
M >0 Vo € Hy ||Az|2 < M. (2)

The space of all bounded operators beetwen Hy and Hy will be denoted by B(Hq, Ha). Moreover, we
define B(H) L B(H, H).

Proposition 5.1.1 a) If dim H; < oo, then every linear map is bounded.
b) Every bounded operator is continuous.



5.2

Of course, B(H1, H3) is a complex vector space and, in addition, it has a natural metric structure:

df Azx||o
jA L gy 1Az
|z <1 ||9U||1

so ||A|| is the smalest M which satisfies the condition (2). It is not difficult to show that in the
topology generated by this norm B(Hj, H3) is complete (i.e. it is a Banach space), moreover, for
B(H) we have the following inequality for the superposition of operators:

[A- Bl < [[A]l-|[B]-

Definition 5.2.1 Let {A,} be a sequence in B(Hy, Hy). Then we say:
a) {An} is convergent if {||An||} is convergent;

b) {A,} is strongly convergent if for all x € H {||Anz||} is convergent;
¢) {An} is weakly convergent if for all z,y € H {(z|Any)} is convergent.

5.3
Proposition 5.3.1 For every A € B(Hy, Hs) there exists exactly one A* € B(Ha, Hy) such that

Va € Hq, Vy € Hy (y‘AZ‘)Q = (A*y|CC)1

Proof
For y € Hs we have the following linear map:

Hy 52— (y|Azx) € C. (3)
Because of
I(ylAz)| < |lyllIl Az || < [lylll[Alll[=],

the functional (3) is continuous, so by the Theorem 3.2.1 there exists z, € Hy such that (y|Az) = (z,|z)
for all x € B(Hy).
Now we can define a linear map

HQBy’%A*yCE‘ZyGHl.
A* is linear:
(A" (w1 + By2)|z) = (w1 + Byz|Az) =
= a(y1|Az) + B(y2|Az) =
= a(A"yi]z) + f(Ayo|z) =
= (aA™y1 + BA yz2|z),

A* is continuous:
[A*y||* = (A*y|A™y) = (y|AA™y) <

< Iyl AllA™yll,
therefore
A"yl < llyllI1A]l,
hence
1A < [IA]l.

Definition 5.3.1 The operator A* is called an adjoint operator of A.



5.4

The following proposition show the elementary properties of the map
* 0 B(Hl, Hg) — B(HQ, Hl)

Proposition 5.4.1 a) A** = A, so * is an involution;
b) A =1|All;

c) (M + uB)* = A* + aB*, so * is antilinear;

d) (AB)* = B*A*;

e) [|A*All = [|Al*.

Proof
a) (y|A™x) = (A"ylr) = (y|Ax),
b) from the proof of the Proposition 5.3.1 we know that ||A*|| < ||A]], but | 4| = [|A**]| < ||A*],
e) first, we have
1A Al < |A*[[I1AIl = Al

second, we have

|A* = sup [[Az||* = sup (Az|Az) = sup (z|A*Az) <
leli<1 Jeli<1 Jeli<1

< sup [lzfl[|A*Az|| < sup |lz||[|A*All]|z] < A" Al
Izl <1 el <1

5.9

Definition 5.5.1 In the case Hi = Hy = H we define

a) if A= A*, then A will be called a Hermitian operator;

b) if for all x € H (z|Azx) > 0, then A will be called a positive operator;
c) if AA* = A*A, then A will be called a normal operator.

Proposition 5.5.1 FEvery positive operator is Hermitian.

5.6 Projection operators

Let as consider a closed subspace F' C H. Then by the Theorem 2.3.1, for all x € H we have
T =+ 2z, where x| € Fand x, € FL. Because this decomposition is unique, we may define the
following linear operator:

df
H>r— Ppz=x) € H.

Proposition 5.6.1 a) Pr € B(H), i.e. Pp is continuous;
b) P: = Pr, i.e. Pr is idempotent;
¢) Py = Pp, i.e. Pp is Hermitian.

Proof

a) [|Prz| = |lzy|| < [l + 2Ll = [|=],

¢) Y| Prz) = (y) +yo|Pr(z) +21)) = (y +yLlz)) = (y)lo)) =

= (yylz) +21) = (Pr(y) +yo)|z +21) = (Prylz). 0

Proposition 5.6.2 If P € B(H) and P? = P = P*, then there exists a closed subspace F C H such
that P = Pp.



Proof
We define a closed subspace in H:

Fd:f{er7 Pz = x}.

For every x € H we have x = Px + (I — P)x, where I is the identity operator. We show that
(I - P)x € F+:
Let f € F then

(fII = P)x) = ((I = P)"flz) = (I = P)flz) = (f = Pf|z) = (0]z) = 0.

O
Proposition 5.6.3 If F, G, F + G are projection operators, then FG = GF = 0.
Proof
F+G=(F+G)?’=F"+FG+GF+G*=F+G+ FG + FG,
which gives that FG + GF = 0. Multiplying this by F we obtain:
0=F(FG+GF)F = FGF + FGF = 2FGF = 2FG*F = 2(GF)*GF.
Because ||A*A|| = ||A||?, we conclude that FG = 0. O

Proposition 5.6.4 Let Ey,...,E, € B(H) be a family of projection operators such that E; # 0,
E,E; =0 fori+#j and Y., E; = 1. Then for A\1,...,\, € C

1Y - NEi| = max{[A1,..., [Anl}.
=1

Proof
Forallz € H, z =Y. | E;x and every component of this sum is orthogonal to each other. Moreover,

if ||lz|| <1 then Y7, ||E;z|| < 1. Now using the notation a; df | Eix||? we may calculate:

n n n
1> NE? = sup | SNEal? = sup 3 INIIE]? =
i=1 sl = i=1

lzll<1=

n
= sup > [Afa; =max{|\ %, A}
a;>0,% a; <1 =1

5.7 Isometric and unitary operators

Definition 5.7.1 A linear operator U : Hy — Hs is called isometric if
Va,y € Hy (zly)1 = (Uz|Uy)2,

if additionally U is "onto,” then we call it a unitary operator.

Proposition 5.7.1 For every unitary operator U : Hy — Hs we have:
a) U € B(Hy,Hs) and ||U|| = 1;

b) U*U = I - identity operator in Hy;

¢) UU* = Iy — identity operator in Ha.



Proposition 5.7.2 IfU € B(Hy, Hs), U*U = I; and UU* = I then U is unitary.

Proof
Obviously U is an isometric operator. To show that for all z € Hy there exists © € H; such that
Ur=zweputz=U"z. O

Corollary 5.7.1 Operator U is unitary if and only if U* = U~".

6 Unbounded operators

6.1

The operator Af & % acting in L2([0, 1],d\) is not an operator in the sense of the Definition 5.1.1,

therefore we need more general definition:

Definition 6.1.1 A linear map T from Hy to Hs defined on a linear subspace Dy C Hy (T : Hy D
Dy — Hy) is called an operator. Dt is called a domain of the operator T'.

Definition 6.1.2 If T, S are operators from Hy to Hy such that Dy C Dg and for all x € Dr
Tx = Sx, then we say that operator S is the extension of T and we write T C S.

6.2

Definition 6.2.1 An operator T is closed if for all sequences {x,} C Dp we have
(xp =z, Txyy —y)=>(x €Dy, Tx=y).
Definition 6.2.2 An operator T is closable if for all sequences {x,} C Dy we have
(xtn — 0 Txy —y)=> (y=0).
From every closable operator we can obtain a closed operator:

Definition 6.2.3 If T is a closable operator from Hy to Hs, then we define:
D= a {z € Hy : H{z,} C Dy, {xn} & {Tx,} are convergent},

Tr ¥ 1im Tx,.

n—oo

T is called a closure of T. Of course T C T.

6.3

Definition 6.3.1 For every operator T from Hy to Hy we define a subspace
Gr ¥ {(z,Tx):x € Dr} C H; ® Ho,

which is called a graph of the operator T .

Proposition 6.3.1 A subset G C Hy ® Hs is a graph of some operator T if and only if G is a vector
subspace and G N (Hy & {0}) = {0}.



Sketch of the proof

DrE{zeH :3yeH (x,y) € G},

Txgy.

Proposition 6.3.2 T is closed if and only if Gr is closed.
O

Proposition 6.3.3 T is closable if and only if Gt (the closure of Gr) is a graph of some operator.

Proof
=> . L L

TCT<=>Gr CGs=>Gr CGs=>GrnN(H &{0}) ={0}.
<= L
Let as consider a sequence {x,,} C Dy such that x, — 0 and T'z,, — y, then (0,y) € G, hence y =0
which means that T is closable. O
6.4

Analogically to bounded operators we want to introduce the notion of an adjoint operator. For the
operator T': H;y D D — Hs we want to define an operator T which satisfies conditions:

T*: Hy D D« — Hy,

Vx € D Vy € D= ($|T*y)1 = (T$|y)2 (4)

Since these two conditions are satisfied by T* = 0, Dy» = {0}, we need some kind of expansion.

Definition 6.4.1 Let T : Hy O Dy — Hy and Dt be dense in Hy i.e. Dy = H,. Then the operator
T* adjoint to T may be defined by:

Dr- ¥ {y e Hy: 3w € H V' € Dy (2|2); = (T2'|y)a },

Ty 4o

Remark 6.4.1 If Dy is not dense, then the equations (z'|x)1 = (T2'|y)2 do not determine x unique,
so T™ cannot exists.

From now on we shall consider only operators with dense domains.
Definition 6.4.2 Let V : Hi ® Hy — Hs ® Hy be given by:
df
V(l’, y) = (_y7 .’ﬂ)
Remark 6.4.2 V is a unitary operator.

Proposition 6.4.1 The condition (4) is equivalent to the inclusion:

Gr- C VG



Proof

It is enough to show that V~'Gy- is orthogonal to Gp:

For x € Dy and y € Dy« we have V~1(x, T*y) = (T*y, —z). Thus, the condition of orthogonality has
the form (z|T*y)1 + (Tx| — y)2 = 0, which is exactly (4). O

Proposition 6.4.2 Let T be an operator. Dr is dense in Hy if and only if VG7 is a graph.

Proof
(0,2) e VG% <=> (z,0)€ G <=> xlDr => z =0 because D is dense. |

Corollary 6.4.1 We have an equivalent definition of the adjoint operator T™*:
T* s represented by the graph VG%.

O
Corollary 6.4.2 For every operator T such that Dy = H; the operator T* is closed.
O
Proposition 6.4.3 a) If the operator T is closable, then D~ is dense;
b) if Dp+ is dense, then T is closable and T** =T.
Proof
a) Let y L Dp«, so (y,0) LGp+. Because V' is unitary,
(y,0) € G- = VG- = VGr, (5)
therefore (0,y) € Gr. Because T is closable, then G is a graph, hence y = 0.
b) from the formula (5) we obtain
(0,y) € Gp <=> yLDrp-.
Since Dy~ is dense, y = 0. Thus, G is a graph.
Gre =V Gy =V I (VGH)r =V VG = Gr = G
O
Corollary 6.4.3 If the operator T is closed, then T = T**.
O

Definition 6.4.3 Let H; = Hy. Then:

a) if T CT*, T is called symmetric;

b) if T =T*, T is called self-adjoint;

c) if T =T*, T is called essentially self-adjoint.

Corollary 6.4.4 T is symmetric if and only if for all x,y € D

(Tzly) = (z|Ty).



6.5

The following theorem shows why the domain of an unbounded operator cannot be an entire Hilbert
space:

Theorem 6.5.1 If T is a closed operator from Hy to Ho and Dy = Hy then T is bounded.

Proof

Let P;, i = 1,2, denote the orthogonal projection in H; & Hy onto the i-th component. Of course
Gr = {(z,Tz) : x € H;} is a Hilbert space and P; |g,: Gr — H; is an isomorphism of Hilbert
spaces. Thus

P, -1
x (Prlex) (x,Tx) L2 Ty
being the superposition of continuous maps, is continuous. O
6.6

We denote by C(Hy, Ha) a set of all closed operators with the dense domain. If Hy = Hy = H, we
write C(H).
Note that C(Hy, Hz) is not a vector space, because, for example, T+ (=T) # 0, but T+ (=T) =0 |p,..

Theorem 6.6.1 If T € C(H), then T*T is self-adjoint.

Proof
Since T is closed, G is a Hilbert subspace of H & H. So we have the orthogonal decomposition:

Ho H=Gr®Gf=Gr oV 'Gr-. (6)
Thus, for every (x,0) € H @ H there exists u € Dy and v € Dp- such that
(z,0) = (u, Tu) + V" v, T*v) = (u — T*v, Tu +v)

and therefore
r=u—T"v and v=-Tu,

hence Tu € D= and w € Dp«p, which allows us to write —T*v = T*Tu. So we proved that
Vee H Ju € Dp«r z=u+T"Tu. (7)

Now we shall show that Dy -7 is dense in H:
Let L Dps«p. Then, by (7), we have

0 = (z|u) = (u|u) + (T*Tu|u) = (ulu) + (Tu|Tu) >0,

which implies u = 0, therefore z = 0.
It is easy to show that T*T is symmetric:

(e|T*Ty) = (TalTy) = (T*Txly).
Finally, we shall show that Dp-r)« C Dp«r:
Let x € D(p+py~ and y A (T*T)*z. Then for each h € Dy«
(9lh) = (T*T)"lh) = (2IT*Th). (®)
From (7) we know that there exists u € Dp«p such that x +y = u + T*Tu.
(x —ulh + T*Th) = (z|h) — (ulh) + (z|T*Th) — (u|T*Th) =
= (alh) — (ulh) + (ylh) — (T*Tulh) = (& + ylh) — (u+ T*Tulh) =0,
but h 4+ T*Th runs over whole H (formula (7)) so # —w = 0. This means that © € Dp-r. ]



7 Spectral measures and integrals

7.1 o—algebras
Let X be any set and B a family of subsets of X.

Definition 7.1.1 B # 0 is called a o—algebra of sets if:
a) if A€ B, then X \ A € B;
b) if A; € B, i € N, then U;A; € B.

Definition 7.1.2 The o-algebra of subsets generated by By is the smallest o—algebra of sets which
contains By.

Definition 7.1.3 Let X be a topological space. Then

a) the o—algebra of Borel sets is the o—algebra generated by the family of all open sets;

b) the o—algebra of Baire sets is the o—algebra generated by the family of all compact sets of the Gs
type (countable intersection of open sets).

Remark 7.1.1 a) If X is a metric space, then every compact set is of the Gs type;
b) (o—algebra of Borel sets) C (0—algebra of Baire sets);

c) if X = U2 K, where K, is compact, then

(o—algebra of Borel sets) = (o—algebra of Baire sets).

7.2 Measures
Definition 7.2.1 Let (X, B) be a set with a o—algebra of sets. A measure is any map
n:B— Ry 20,00,

which satisfies the condition:
(A7 eB,ieNA;N Aj = @, ) 7é _]) => (/L(UfilAi) = ZM(AJ) .
i=1

If additionally u(X) = 1, then u is called a probabilistic measure.
Definition 7.2.2 Let as consider (X, B). The function f: X — R is called B—measurable if
Vee R f7Y(] —o0,c]) €B.

Proposition 7.2.1 The measurable functions have the following properties:
a) they form an algebra (with ordinary pointwise addition and multiplication);
b) if {fn} is a sequence of measurable functions and for allx € X, f,(x) — f(x), then f is measurable.

O

Definition 7.2.3 Baire(X) is, by definition, the set of all functions which are measurable with respect
to the o—algebra of Baire sets.

Proposition 7.2.2 Cy(X) C Baire(X), or, more precisely Baire(X) is the smallest family of func-
tions which contains Co(X) and is closed with respect to pointwise limits.



7.3 Integrals
Let as consider a set X with a o—algebra of sets B and a measure pu.

Definition 7.3.1 Let xa be the characteristic function of the set A € B. If u(A) < oo, then we
define:

[;xA<m»wdx>¥;4A>

Definition 7.3.2 A function f is called a B-measurable stair function if u({z : f(x) # 0}) < o0 and
the value set of f is finite.

We see that f is a linear combination of characteristic functions:

n
f = Z QiX A
i=1
thus, we can define the integral
df O
[ s@ntan) £ Y auna)
i=1

The set of all B—measurable stair functions forms a vector structure and the integral is a positive
functional on this space, so we can apply the Stone procedure to expand the integral on £P () and to
construct LP(u) etc. Let as recall the following theorem from the general theory of the integral:

Theorem 7.3.1 Let X be a locally compact topological space and let ¢ : Co(X) — R be a linear map
which preserves positivity (i.e. if for all z € X f(x) > 0 then ¢(f) > 0). Then there exists a measure
wu on the o—algebra of Baire sets such that

mn:Aﬂmmm

O
Below we shall consider measures not necessarily positive i.e. the measures of the form p; — po or
p1 + ipe (complex), where g, po are positive.

7.4 Spectral measures

Definition 7.4.1 Let (X, B) be a set with a o—algebra of sets and let B(H) be the space of all bounded
operators in a Hilbert space H. A spectral measure is any map E : B — B(H) which satisfies the
following conditions:

a) for all A € B, E(A) is a projection operator;

b) Zf14Z e B, AiﬂAj :(Z), 1,7 € N, 275], x € H, then

E(UR A)z =) E(A)z;
i=1
¢) E(X) = I is the identity operator.

Remark 7.4.1 Note that in the condition b) we have a strong convergence, not an operator conver-
gence.

Proposition 7.4.1 Let E be a spectral measure and let A, B € B. Then
E(A)E(B) = E(B)E(A) = E(ANB).



Proof
Let A =A—B, B =B — Aand C' = AN B. We have

E(A)=E(A)+ E(C"), E(B)=E(B)+ E(").
Now, by the Proposition 5.6.3 we can calculate:
E(A)E(B) = E*(C") = E(C") = E(ANB).
O

Remark 7.4.2 If £ : B — B(H) is a spectral measure and x € H, then the map B > A —
(z|E(A)x) € Ry is a measure, and we denote it by (z|Ezx).

7.5 Spectral integrals

Definition 7.5.1 Let (X,B,E) be a set with a o—algebra of sets and a spectral measure. For the
given stair function f(z) =Y | a;xa,(z), we define the spectral integral

[ #@)Bn) £y aikan)
X i=1

Proposition 7.5.1 The spectral integral has the following properties:
a) if f =1 then [y f(x)E(dx) = I;
b) for all a, 8 € C and f1, fa being stair functions

[ @ p@ B = o [ A@EED <5 [ B

¢) for all fi1, fo being stair functions

[ n@awe - ([ rwew) ([ wwsw):

d) fxi (fx )*;

e) ||fx dm)” < SuPzeX |f( |-

Proof
b) Taking into account the definition and the fact that the integral does not depend on the represen-
tation of the stair function, i.e.

> aixa, =Y Bixs, | => | D aiBE(A)=> BiEB) |,
i=1 j=1 i=1 j=1
the proof is obvious. ¢) For fi = 371" | aixa, and fo = >, Bixp, we have

fifs =Y iBixaxs, = Y, iBiXans;,
i (2]
which gives

[ h@) @ ) = S 08BN By) = Y i B(A)E(B)).

e) The proof follows directly from the Proposition 5.6.4. O



Corollary 7.5.1 If{f,} is a sequence of stair functions which is uniformly convergent to the function
[ then it follows from e) that the sequence [y fn(x)E(dx) is convergent and its limit depends only on

7.
O

Definition 7.5.2 If{f,} is a sequence of stair functions which is uniformly convergent to the function
f, then we define

[ #@B@) L i [ @),
X X

Proposition 7.5.2 FEvery bounded B—measurable function f may be conformly aproximated with stair
functions.

Proof
Since f is bounded we may cover the set f(X) by Ul ;A;, where |A;| < e. Now, defining:

AL {zeX:fla)e A,

and
df -
fs = ZXAN
i=1

we have

sup | f(z) — fe(z)| <e.

reX
O

Theorem 7.5.1 Let X be a compact space and let ¢ : C(X) — B(H) be a map which satisfies the
following conditions:
a) ¢ is linear;

b) ¢ is multiplicative i.e. ¢(f1f2) = o(f1)d(f2);

¢) ¢ is symmetric i.e. d(f) = (o(f))*;
1) 6(1) = I.
Then there exists a spectral measure E on the o—algebra of Baire sets such that for all f € C(X)

Mﬁ=Lﬂ@ﬂM)

Proof
Step 1.

Let M £ sup,cx |f(z)]. Then M? — ff >0, so there exists a nonnegative function g such that
M? = ff +gg.
Acting on this equality by ¢, we obtain

M2I=¢(f)"6(f) + ¢(9)"¢(9)

and taking the average value over v € H we have
M?(v]v) = (v]6 () ¢(f)v) + (v|(9) d(g)v) =
= (¢()vlg(f)v) + ((g)vle(g)v) = lle(foll* + lle(g)v]|*.



Finally we obtain

[6(HII < sup | f(2)].
reX

Step 2.

If f >0 then ¢(f) > 0. Since because f = f2f2, ¢(f) = ¢(f2)*d(f2).
Step 3.

For each u € H we define the map

C(X) 3 [ (ulo(flu) € C

This map assigns positive numbers to positive functions, so by the Theorem 7.3.1 there exists a
measure U, such that

(ulo(f /f ) (d).

Using the formula
3

sz(zku + v|A(iFu + v)),

k=0

(u Av) =

o~ =

we obtain a complex measure i, ,, which satisfies

(ul(f /f it (de).

Step 4.
Now we may extend ¢ on a whole family of bounded Baire functions, denoted by Baire,(X). Because
X is compact, 1 = f € L' (y), so for all f € Baire,(X) we define

(uld(f df/f Vit ().

As an exercise we propose to prove that this definition is good i.e.

i) the right-hand side of this definition is antilinear in v and continous in v,

ii) & fulfil the conditions a)—d). For example, b) follows from the Lebesgue theorem on majority
convergence.

Step 5.

We define the map

B> A~ E(A) L §(xa) € B(H).

We prove that this is a spectral measure:
i) E(A) is a projection operator:

E(A)? = d(xa)d(xa) = d(2) = d(xa) = E(A),

BE(A)* = d(xa)" = 6(xa) = dlxa) = B(A),

i) B(X) =¢(1) = ¢(1) =1,
iii) countable additivity of E in strong topology:
Let A =U2, A; where A; N Aj; =0 for ¢ # j. For each u € H we define a sequence {wy} by

N
wy £ B(A)u
=1

To show that this sequence is convergent, it should be noted that the series

o0

> IE(Aul?

i=1



is convergent. It follows from the fact that partial sums for this series are bounded by ||ul|?. Since
the vectors E(A;)u are orthogonal, we have

M M
lwoy —wa* =11 Y E(Aul® = > [E(A)ul?,
i=N+1 i=N—+1
so {wy} is convergent.
Finally, from the fact that for all z € X
N

xalz) = lim 2_:1 x4, (@),

we have -

(ulE(A)v) = (ul B(4,)v),

=1

which gives

Jim_wy = > E(A)u= E(UZ, A)u.

i=1
Step 6.
Finally, we have that for every stair function f

a(f) = /X f(2)E(da) (9)

and, by the continuity, this is true for every f € Baire,(X). |

Definition 7.5.3 (Spectral integral for arbitrary Baire function.) Let f € Baire(X) and {f,}
be a sequence in Bairey(X) such that for all z € X

[fn(@) < |f()] falz) — f(2).

We define an unbounded operator by

/Xf(JU)E(dgc)ud:f lim [ f(z)E(dz)u,

n—oo X

with a domain consisting of those w € H for which there exists the limit on the right side of this
definition.

7.6
Directly from the definitions of spectral measure and integral we obtain:

Proposition 7.6.1 If ¢ : X1 — X5 is a measurable mapping and E is a spectral measure on X1, then

1s spectral measure on Xs and

/X fa2)Fldes) = [ F(é(x2)E(day).



8 Commutative C*—algebras

8.1

Definition 8.1.1 A is a C*—algebra if:
a) A is a vector space over C;
b) there is in A a bilinear and associative multiplication

AXx A>3 (a,b) —abe A,

(if additionally there exists 1 € A such that for all a € A la = al = a, we call A the algebra with
identity);
¢) there exists an antylinear map A > a+— a* € A such that for all a,b € A

a* =a, (ab)* =b"a",

(it follows from this that 1* =1);
d) A is a normed space such that for all a,b € A

labll < lallllbll,  lla*|| = llall;

e) A is complete in this norm;
f) forallae A

la*all = [|all*;
g) if additionally for all a € A, ab = ba, then A is called a commutative C*—algebra.

Definition 8.1.2 Element a € A is called invertible if there exists a=* € A, such thataa™' = a " 'a =
1. In opposite case, a is called noninvertible.

8.2 Examples

a) the set of bounded operators in a Hilbert space is a C*—algebra,;
b) if A € H and A* = A, then the closure of the space of all polinomials of A is a commutative
C*—algebra;
c) if A is a compact topological space, then C'(A) with
« df 7

FFET AN E sup £V,
AEA

is a commutative C*—algebra. It turns aut that every commutative C*—algebra is of this form, more
precisly, we have the following theorem which will be proved in this section:

Theorem 8.2.1 (Gelfand) Let A be a commutative C*—algebra. There exists a compact space A
and a map A> ar— a € C(A) such that for all a,b e A, r,s € C and \ € A:

a) (ra/—:sb)()\) = ra(\) + sb(\);

b) ab(X) = a(A)b(\);

¢) a*(A) = a(A);

d) [|al| = supyen [a(N)];

e){a:aec A} =C(A).

Shortly, we have an isomorphism of C*—algebras.

Definition 8.2.1 A character of the C*—algebra A is any map A > a — x(a) € C such that for all
a,be A andr,s € C:

a) x(ra+ sb) =rx(a) + sx(b);

ab) = x(a)x(b);




Remark 8.2.1 The notion of character is important because we shall define A as the space of all
characters of A equipped in some topology and we shall put:

a(x) £ x(a).

From now on A will denote a commutative C*—algebra with identity.

8.3 Ideals

Definition 8.3.1 A subset T C A is called an ideal if:
a) T is a vector subspace in A;
b) for alla € T and b € A we have ab € T;

¢)1¢7T (ie. T#A).
Corollary 8.3.1 IfZ is an ideal, then A/Z is an algebra, where
@+ +b+T) Lat+b+1,
(a+I)(b+T) Lab+T.
O

Proposition 8.3.1 FEvery element of each ideal is noninvertible and every noninvertible element in
A is in some ideal.

Proof
Let a,a™' € Z, then 1 € Z, which is a contradiction.
For noninvertible a € A we define the ideal

Id:f{ab: be A}

O
8.4 Maximal ideals
Definition 8.4.1 M is called a mazximal ideal if:
a) M is an ideal;
b) if there exists an ideal T, such that M C I, then M =T.
Proposition 8.4.1 FEach ideal is included in some mazximal ideal.
Proof
Follows from the Kuratowski — Zorn lema. a
Corollary 8.4.1 Ifa € A is noninvertible, then there exists a maximal ideal M such that a € M.
O
Proposition 8.4.2 If M is a maximal ideal, then A/ M ~ C.
Proof
Follows directly from the Gelfand—Mazur theorem, which will be proved later. O

Corollary 8.4.2 The map A>ar—a+ M € A/M ~ C is a character.



8.5
Proposition 8.5.1 If ||1 —al| < 1, then a is invertible.

Proof
Let as consider the series > - (1 — a)™. It is convergent, so by putting a = 1 — (1 — a) we see that
this series is the inversion of a. a

Proposition 8.5.2 The closure of an ideal is an ideal too.

Proof

Let as consider an ideal Z, then its closure Z is a vector subspace in A.

Let a = lima, € Z, a, € T, then for all b € A we have ba = limba,, € 7.

1 ¢ T follows from the Proposition 8.5.1. a

Corollary 8.5.1 FEvery maximal ideal is closed.

8.6

Definition 8.6.1 a) The spectrum of an element a € A is the set
Spa {A € C:a— Al is noninvertible };

b) the resolvent set of a:
df
o(a) =C\ Spa.

Proposition 8.6.1 a) If A € C is such that |A| > ||a||, then X € o(a);
b) o(a) is open in C;
¢) the map

o) > = Ra N E (a-2)ted
is holomorphic. R(a, ) is called the resolvent of a;

d) Spa#0.

Proof
a) Since |[A| > ||a||, the series

is convergent. Moreover

Thus we have
1 a”

R(a,\) = (a— M)t =< -
)\n:O)\

b) Let Ao € o(a), e.i. (a — X\o1)~! exists. Let as consider A from some neighbourhood of A\g. Then

(a—=M)"1 = ((a—rol) + (Ao =N 7! =

= {(a—2ol) [1— (A= Ao)(a— o))"} " =



=(a—21)7' Y [(a—= A1) 7T (A= 20)] "
n=0
This series is convergent if |A — X\g| < |la — A\g1||~!. Finally we see that each point in p(a) has a
neighbourhood in this set.
¢) The proof is obvious because R(a, A) is given by the series (10).
d) Assuming that Spa = (), we have R(a, \) defined on the whole C as a holomorphic function, which
by (10) satisfies
R(a,\) = 0 if |A] — oo.
Thus R(a,\) = 0 which is contradiction. O

Corollary 8.6.1 a) Spa is compact;

b) we have the following equality
sup [Al = lall.
€Spa

Proof
b) Because the series (10) is convergent, then

R
2 < b
which implies that
sup |A| = lim {/||a™||
A€Spa n—00
is the radius of the minimal circle containing Sp a.
But [|a*a]| = [lal|?, so
la®]* = [[(a*)?a®|| = |la*aa”a]| = [|la*a]* = ||a]*,
therefore ||a?|| = ||al|? and
k k
la® || = lla]l*"-
O
Another corollary from the Proposition 8.6.1 is the following theorem
Theorem 8.6.1 (Gelfand, Mazur) If every a € A\ {0} is invertible, then
A={\l:)eC}
Proof
For a € A\ {0} there exists A € Sp a such that a — A1 is noninvertible, so a — A1 = 0. O
8.7

Let f be an entire function on C ie. f(z) = Y .~ ;¢,2™ and this series is convergent for all z € C.
For all a € A we define

oo

fla) = Z cpa”.

=0

It is easy to show that
1

2mi

fa) = =51 § FQ)a - c1) e
where the integral is taken over the contour including Sp a, moreover

Sp f(a) = f(Spa).



Proposition 8.7.1 If a = a*, then Spa C R.

Proof

Let as consider
n

d_fia_oo(ia)
b=ce —z_% T

We have b*b = e~"¢' = ¢ = 1, so ||b|| = 1, which gives

Spbc{reC:|A <1}

But Spb=¢"P? 5o
(z € Spa)=> (Imz > 0),

moreover Sp b* = e~*5P2 5o
(z € Spa)=> (Imz<0).

8.8

Proposition 8.8.1 Ifa € A and M is a mazimal ideal in A, then there exists exactly one complex
number Ay such that
a—Apml eM.

Proof
Let as consider the C*—algebra A/ M with the norm given by

la+M|E i fa|l
a’€a+M

Because M is maximal, then .4/M satisfies the conditions of the Gelfand — Mazur theorem, thus
A/ M~ C.
O

Definition 8.8.1 Let M denote the set of all maximal ideals in A. We define the map called the
Gelfand transformation
A3 awa € {complex functions on M},

given by

The(lr\em 8.8.1 For all a,b € A:
a) (a+b)=a+b;
b) ab = ab;
c) 1=1 - constant function on M;
d) a(M) = Spa;
e) defining
lall £ sup fa(M,
MeM
we have that ||a|| = ||al|;
f)a* =a;
g) 4(M) =0 if and only if a € M.



Proof

b) ab — a(M)b(M)1 = (a — a(M)1)b+ a(M)(b — b(M)1) € M.

d) if A € Spa, then there exists a maximal ideal M such that a — A1 € M, so A = a(M). Thus
Spa C a(M).

Now let A € a(M) which means that there exists a maximal ideal M such that A = a(M), so a — Al
is noninvertible i.e. A € Spa. Thus (M) C Sp a. e) we have

lall = sup |a(M)| = sup [A]=[all.
MeM AESPpa

f) the proof follows from the observation that

b=b*" => bM)eR

and that a = $(a+ a*) +ig-(a —a*) and a* = J(a+a*) — iz (a — a*). O

8.9 Topology on M

To prove the spectral theorem, it is enough to limit our considerations to the case when A is generated
by a finite number of elements aq, ..., a, € A i.e. A is the closure of the space of all polinomials of a;,
1=1,...,n.

Proposition 8.9.1 If My, My € M and a;(M;) = a;(Ms), i =1,....,n, then My = Ms.

Proof
Follows from the fact that

O

Corollary 8.9.1 We hawve the injection
M>3> M- (a3(M),...,a,(M)) € C™. (11)
O

Definition 8.9.1 The topology on M is defined as a pull-back, by the map (11), of the usual topology
from C™.

Theorem 8.9.1 a) M is compact;
b) for all a € A the function a is continuous;
¢) each continous function on M is of the form a, for some a € A.

Proof

a) M is bounded because |a;(M)| < ||a;].

We shall show that M is closed:

Let { M} be a Couchy sequence in M, so there exists (A1,...,\,) € C™ such that for alli = 1,...,n,

We must show that there exists the maximal ideal M, such that a;(Ms) = A; for all 4. Tt follows
from the proposition 8.9.1 that for all a € A there exists A\, € C such that

Ao = klim a(My).



Thus we have the multiplicative and linear map
A>a— A, €C,

which leads to the definition: e
My ={ae A: A, =0}
It is easy to see that M, is an ideal. Because codim M, = 1, we obtain that M, is a maximal

ideal. e
Let z; = 4;(Myo), then a; — ;1 € M, ie.

0=Aq;—z1 = A — 2.

Finally we have
khm My = My € M.

b) All a; are continuous, so all its polinomials and limits of polinomials (because convergence in .4
implies uniform convergence of the Gelfand transformations).
¢) The proof follows directly from the Stone—Weierstrass theorem. a

Remark 8.9.1 In this way we completed the proof of the Gelfand theorem 8.2.1.

9 Spectral theorems

9.1 Spectral theorem for Hermitian operators
Let as assume that A is a C*—subalgebra in B(H) generated by a Hermitian operator A.

Theorem 9.1.1 If A € B(H) is a Hermitian operator, then there exists a spectral measure E on
Sp A, such that

A= AE(dN).
Sp A

Proof

The inverse Gelfnad trasformation is an example of an isomorphism between C(M) and A which
satisfies the conditions of the Theorem 7.5.1. This implies that there exists a spectral measure E’ on
M such that for all B € A we have

B= /M BOVE/ (),

where B is the Gelfand transformation of B. Moreover, due to the Theorem 8.8.1 d) and the Propo-
sition 8.9.1, we may identify M with Sp A C R.
Taking into account the Proposition 7.6.1, we see that there exists a spectral measure E on Sp A such
that
B = B(A_1(N)E(dN), (12)
Sp A

where A_ is the inverse map to the Gelfand transformation of the generator of A, i.e. A_:SpA—
M. Putting A in (12) we complete the proof. |

This proof show that we may also formulate the spectral theorem for unitary operators or, more
generally for normal operators. If an operator A is not normal, then we cannot imbed A into some
commutative algebra.



9.2 Cayley transformation
Now let T' be an unbounded operator in a Hilbert space H and let Dy denote the domain of 7.

Proposition 9.2.1

(T =T*) => ((T +il)Dr = H).

Proof

Step 1.

We shall prove that (T +¢I)Dr is dense in H:

Let as assume that there exist 0 # ul (T =+ ¢I)Dp, which means that for all v € Dy we have
(u|(T £ iI)v) =0, so (u|Tv) = (£iulv), which implies that v € Dy~ and T*u = iu. But T* =T, so
Tu = iu, which iscontradiction.

Step 2.

We shall prove that (T & ¢I)Dr is closed in H:

Because T = T, then for each v € Dy we can directly calculate that

)T & iTyo = | To]? + [l (13)
Now let h € H, then there exists a sequence {v,,} such that
(T+il)v, — h if n— .
Thus, by (13), {v,} and {Tv,} are Couchy sequences, so there exist v, w € H such that
v, —v and Tv, — w.

Moreover, T is closed (because T'= T*), then Tv = w.
Finally (T 4 iI)v = h. |

Corollary 9.2.1 T + I is invertible.

Proof
It follows from (13) that ker(T £ il) = {0}. O

Definition 9.2.1 The Cayley transformation of an operator T’ =T* is the operator
df . o —1
Ur = (T —i)(T+il)”".

Proposition 9.2.2 Ur has the following properties:
a) the domain of Up is the whole H;

b) UT(H) = H,‘

¢) for all h € H we have ||[Urh]|| = ||h||.

Corollary 9.2.2 Ur is a unitary operator.



9.3 Idea of a proof of the spectral theorem for self-adjoint operators

In particular, we have the spectral representation of Urp:
Up = / NEu, (d)).
[Al=1

The main idea is as follows:
Using the spectral representation of Uy we want to obtain the representation of T' due to the inverse
Cayley transformation:

T=—i(Up—I)"Y(Up +1)

Thus we propose

A+1
T:/ 2 S By (dN),
‘A|:1 A_l T( )

where, of course
A+1
—i—— € R.
-1

It is easy to check that the mapping

af o A+1

Sl—{l}aAHOfl(A):—i)\_leR

is "onto.” So we may define the spectral measure on R:
df
Er(A) = Eu, (C(A)).

Now, by the Proposition 7.6.1 we obtain:

T /S TN B () = /R 1Ey, (C(dp)) =

= / pEr(dp),
R
where = C~1(\).

9.4 The spectral theorem for self-adjoint operators

Theorem 9.4.1 If T is a self-adjoint operator in a Hilbert space H, then there exists a spectral
measure ET on the real line R such that:

T= /+OO pET(dp).

— 00

Proof
For u € Dy we have (from the Cayley transformation) the following formula
Ur(T +il)u= (T —il)u (14)
or, in another form
(UT — I)TU = —i(UT + I)u (15)

Let as consider the equation (Ur — I)v = 0. By the Proposition 9.2.1 let * € Dp be such that
v = (T + iI)z. Using (14) we obtain Upv = (T — iI)x. But our equation gives Urv = v. Therefore



(T + il)x = (T — iI)x, which means ix = —iz or x = 0, so v = 0. Concluding, the equation (15)
determines T'uw in a unique manner.
It will be convenient to define

. ¥ ne st jarg) > e}

and .
H. L By, (COH.

For w € H. N Dy we have a good defined bounded operator:
A+1
Tu = /CE fzﬁEUT (d\)u,
which, for our u, we may write in the following form:

A+1
Tu= / 7ZﬁEUT (d)\)u,

(of course, St = Cy).
We shall check that this formula satisfies the equation (15):

A1
(UTfI)/ i B (@ =
o A1

A+1
= [ 0= nEs @ [ it B @ -

_ _i/ (A + 1) By (dNu = —i(Up + D).
Sl

This allows us to put for u € Dp:

1
Tud:fhm/ LN (16)
e—0 C. A—1

First of all we check that this Tw satisfies (15) too:
Since the operator Ur — I is continous, it commutes with the operation of taking limit

A+1

(Ur —I) lim —i——FEy, (d\)u =
e—0 C. A—
—lim [ —i(A+ 1) Ep, (d\u 2
e—0 C.

= fi/ A+ 1) Ey, (dNu = —i(Ur + Iu,
Co
where the equality (*) follows from the fact that:

lim || (A + 1) Euy (dN)ul|* = (u By, ({1})u) = 0,
e—0 CO\Cs
because Ey,. ({1}) = 0 (i.e. there does not exist a vector 0 # v € H, such that Upv = v).
To prove that the limit in (16) exists, it should be noted that we may rewrite (15) in the following
form:

/ (A= 1)Ey,.(d\)Tu = 71‘/ A+ 1) Ey, (d\)u.
Co Co



Now, because sz (A —1)"1Ep,.(d\) a bounded operator,

/CE 1By, (d\) T = /C (A= 1)1 By, (d\) /C (A — 1) By, (d\)Tu =

:/ LN
C.

A—1
Thua the limit exists and by the Proposition 7.6.1 we have for all u € Drp:

—+oo
Tu= [ nBr(duu

—0o0

where pu = —i%. Thus we have

+oo
TC / pEr(dp).

—00

It is easy to see that fjoo: wEr(du) is symmetric, then, because T'= T™*, we have:

T= /+OO pET(dp).

— 00



