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1 Hilbert spaces

1.1

Let H be a complex vector space equipped with a scalar product denoted by (·|·), so (H, (·|·)) is a
unitary space. Every scalar product (·|·) defines a norm ‖ · ‖ by

‖x‖2 df= (x|x) x ∈ H.

Definition 1.1.1 A complete unitary space is called a Hilbert space.

It will be usefull to recall the two following inequalities:
a) Schwarz inequality

∀x, y ∈ H |(x|y)|2 ≤ (x|x)(y|y);

b) Minkowski inequality
∀x, y ∈ H ‖x + y‖ ≤ ‖x‖+ ‖y‖.

1.2 Examples of Hilbert spaces

a) Cn with the standard scalar product:

(z|w) df=
n∑

i=1

z̄iwi ∀z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn;

b)

l2
df=

{
{an} ⊂ C, n ∈ N :

∑
n

|an|2 < ∞

}
,

with the scalar product given by:
({an}|{bn})

df=
∑

n

ānbn;

c) L2(Rn, dλ), where dλ is the Lebesgue measure, with the standard scalar product:

(f |g) df=
∫
Rn

f(x)g(x)dλ(x), f, g ∈ L2(Rn, dλ).
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1.3

Definition 1.3.1 a) A Hilbert space is called separable if there exists a countable set which is dense
in this space or, equivalently, this space has a countable basis.
b) Two vectors x, y ∈ H are called orthogonal if (x|y) = 0; we denote it by x ⊥ y.
c) A set in a Hilbert space is called orthogonal if any two elements of this set are orthogonal.
d) If the norm of any element of an orthogonal set is one, this set is called orthonormal.
e) An orthonormal (o.n.) basis of a Hilbert space is any complete orthonormal set.

1.4

Proposition 1.4.1 If H1 and H2 are Hilbert spaces, we have a Hilbert space structure on H1 ×H2

given by:
((x, y)|(x′, y′))H1×H2

df= (x|x′)H1 + (y|y′)H2 ∀(x, y), (x′, y′) ∈ H1 ×H2.

2

Definition 1.4.1 The Hilbert space H1 ×H2 with the scalar product defined above is called a direct
sum of Hilbert spaces and we denote it by H1 ⊕H2.

Proposition 1.4.2 A scalar product as a function (·|·) : H ×H → C is continuous.

Proof
If xn → x and yn → y, then {xn}, as a convergent sequence is bounded.

|(xn|yn)− (x|y)− (xn|y) + (xn|y)| ≤

≤ |(xn|yn − y) + (xn − x|y)| ≤
≤ M‖yn − y‖+ ‖y‖‖xn − x‖.

2

1.5

Proposition 1.5.1 If {en}n∈N is an o.n. basis and {tn} ∈ l2, the series
∑

n tnen is convergent and

‖
∑

n

tnen‖ =

(∑
n

|tn|2
) 1

2

. (1)

Proof
Let SN

df=
∑N

n=1 tnen, then

‖SN − SM‖2 = ‖
N∑

n=M+1

tnen‖2 =

= (tM+1eM+1 + ... + tNeN |tM+1eM+1 + ... + tNeN ) =
N∑

n=M+1

|tn|2.

Since the series
∑

n |tn|2 is convergent, the sequence {SN} is Couchy, so it is convergent.
Since the scalar product is continuous, we have(∑

n

tnen|
∑
m

tmem

)
=
∑
n,m

t̄ntm(en|em) =
∑

n

|tn|2.
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Proposition 1.5.2 If {en} is an o.n. basis, x ∈ H and tn
df= (en|x), then

a) {tn} ∈ l2;
b) x =

∑
n entn;

c) ‖x‖2 =
∑

n |tn|2.

2

1.6 Example. Fourier series

Let us consider L2([0, 2π]) with a scalar product given by

(f |g) df=
1
2π

∫ 2π

0

¯f(λ)g(λ)dλ.

The family of functions defined by
ek(λ) df= eiλk, k ∈ Z,

form an orthonormal set and we shall show that it is an o.n. basis:
Let as assume that there exists f ∈ L2([0, 2π]) such that (f |f) = 1 and (ek|f) = 0 ∀k ∈ Z. Then we
have

0 = (ek|f) =
1
2π

∫ 2π

0

e−ikλf(λ)dλ ⇒

⇒
∫ 2π

0

N∑
k=−N

ake−ikλf(λ)dλ = 0 ∀N ∈ N,∀ak ∈ C.

Inasmuch as the family of functions of the form
∑N

k=−N ake−iλk fulfil the assumptions of the Stone–
Weierstrass theorem on a circle, so by this theorem f(λ) ≡ 0, which is contradiction. 2

Now let as consider the consequence of the Proposition 1.5.2:

f ∈ L2([0, 2π]) ⇒ tk =
1
2π

∫ 2π

0

e−ikλf(λ)dλ,

moreover
1
2π

∫ 2π

0

|f(λ)|2dλ =
∞∑

k=−∞

|tk|2,

finally we obtain the Fourier series

f(λ) =
∞∑

k=−∞

tkeikλ,

which means that
1
2π

∫ 2π

0

|f(λ)−
N∑

k=−N

tkeikλ|2dλ −→ 0

if N →∞.

2 Subspaces

2.1

Definition 2.1.1 A vector subspace F of a Hilbert space H is closed if F is closed in the topology
generated by the scalar product in H.



2.2

Definition 2.2.1 Let G be any subset of H, then

G⊥ df= {x ∈ H : ∀y ∈ G (x|y) = 0}.

Proposition 2.2.1 Let G be any subset of H, then
a) G⊥ is a closed subspace;
b) G ⊂ G⊥⊥.

2

2.3

Theorem 2.3.1 (on the orthogonal projection (Beppo-Levi)) If F is a closed subspace of H
and x ∈ H, then
a) x = x‖ + x⊥, where x‖ ∈ F, x⊥ ∈ F⊥;
b) this decomposition is unique.

Proof
a) Let {en} be an o.n. basis in F and let

x‖
df=
∑

n

(en|x)en and x⊥
df= x− x‖.

It is enough to show that x⊥ ∈ F⊥:

(em|x⊥) = (em|x)− (em|
∑

n

(en|x)en) = 0.

b) Let x = x‖ + x⊥ and x = x′‖ + x′⊥, then

F 3 x′‖ − x‖ = x⊥ − x′⊥ ∈ F⊥ ⇒ x′‖ − x‖ = 0.

2

Corollary 2.3.1 If F is a closed subspace, then F⊥⊥ = F .

Proof
It is enough to show that F⊥⊥ ⊂ F . Let x ∈ F⊥⊥, then by the Theorem 2.3.1 we have

x = x‖ + x⊥ x‖ ∈ F, x⊥ ∈ F⊥,

therefore
0 = (x|x⊥) = (x‖|x⊥) + (x⊥|x⊥),

which gives
(x⊥|x⊥) = 0 ⇒ x⊥ = 0 ⇒ x ∈ F.

2

2.4

Proposition 2.4.1 a) G⊥⊥ is the smallest closed subspace containing the set G.
b) Let F be a subspace, then F is dense if and only if F⊥ = {0}.
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3 Linear functionals

3.1

Definition 3.1.1 A linear (antilinear) functional is any linear (antilinear) map l : H → C.

Proposition 3.1.1 A linear functional l is continuous if and only if

∃c > 0 ∀x ∈ H |l(x)| ≤ c‖x‖.

2

3.2

Theorem 3.2.1 (Frechet, Riesz) For every continuous linear functional l there exists a vector y ∈
H such that

l(x) = (y|x) ∀x ∈ H.

Proof
Let {en} be an o.n. basis in H. First we shall show, that the series∑

n

l(en)en

is convergent: ∑
n

|l(en)|2 =
∑

n

l(en)l(en) = l(
∑

n

l(en)en) ≤

≤ c‖
∑

n

l(en)en‖ ≤ c

(∑
n

|l(en)|2
) 1

2

,

hence ∑
n

|l(en)|2 ≤ c2.

Now we can put
y

df=
∑

n

l(en)en

and calculate
(y|en) = (

∑
m

l(em)em|en) = l(en).

2

Remark 3.2.1 It is very easy to formulate an analog of this theorem for continuous antilinear func-
tionals.



4 Barrelled spaces

4.1

Definition 4.1.1 A subset Q ⊂ H is called absolutely convex if

∀x, y ∈ Q ∀α, β ∈ C
(
|α|2 + |β|2 ≤ 1

)
⇒ (αx + βy ∈ Q) .

Definition 4.1.2 Q ⊂ H is called absorbing if
⋃∞

n=1 nQ = H.

Definition 4.1.3 A closed, absolutely convex, and absorbing set is called a barrel.

Definition 4.1.4 A topological vector space is called barrelled if every barrel is a neighbourhood of
zero.

Proposition 4.1.1 A Hilbert space is barrelled.

2

4.2

Proposition 4.2.1 Let R be a subset in H such that

∀x ∈ H ∃M > 0 ∀y ∈ R |(x|y)| < M.

Then
∃N > 0 ∀y ∈ R ‖y‖ < N.

Proof
Let Ro df= {z ∈ H : ∀y ∈ R |(z|y)| ≤ 1}. It is easy to see that Ro is closed and absolutely convex. We
shall show that it is absorbing:
If x ∈ H, then 1

M x ∈ Ro. Thus x ∈ MRo ⊂ nRo for some n ∈ N.
Hence Ro is a barrel, so it is a neighbourhood of zero i.e. there exists r > 0 such that the closed ball
K(0, r) ⊂ Ro.
Let y ∈ R. Since ‖ ry

‖y‖‖ = r, ry
‖y‖ ∈ Ro, which gives

|( ry

‖y‖
|y)| = r‖y‖ ≤ 1,

therefore
‖y‖ ≤ 1

r
.

2

5 Bounded operators

5.1

Definition 5.1.1 A linear map A : H1 → H2 between two Hilbert spaces is called a bounded operator
if

∃M ≥ 0 ∀x ∈ H1 ‖Ax‖2 ≤ M‖x‖1. (2)

The space of all bounded operators beetwen H1 and H2 will be denoted by B(H1,H2). Moreover, we
define B(H) df= B(H,H).

Proposition 5.1.1 a) If dim H1 < ∞, then every linear map is bounded.
b) Every bounded operator is continuous.
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5.2

Of course, B(H1,H2) is a complex vector space and, in addition, it has a natural metric structure:

‖A‖ df= sup
‖x‖≤1

‖Ax‖2
‖x‖1

,

so ‖A‖ is the smalest M which satisfies the condition (2). It is not difficult to show that in the
topology generated by this norm B(H1,H2) is complete (i.e. it is a Banach space), moreover, for
B(H) we have the following inequality for the superposition of operators:

‖A ·B‖ ≤ ‖A‖ · ‖B‖.

Definition 5.2.1 Let {An} be a sequence in B(H1,H2). Then we say:
a) {An} is convergent if {‖An‖} is convergent;
b) {An} is strongly convergent if for all x ∈ H {‖Anx‖} is convergent;
c) {An} is weakly convergent if for all x, y ∈ H {(x|Any)} is convergent.

5.3

Proposition 5.3.1 For every A ∈ B(H1,H2) there exists exactly one A∗ ∈ B(H2,H1) such that

∀x ∈ H1, ∀y ∈ H2 (y|Ax)2 = (A∗y|x)1.

Proof
For y ∈ H2 we have the following linear map:

H1 3 x 7−→ (y|Ax) ∈ C. (3)

Because of
|(y|Ax)| ≤ ‖y‖‖Ax‖ ≤ ‖y‖‖A‖‖x‖,

the functional (3) is continuous, so by the Theorem 3.2.1 there exists zy ∈ H1 such that (y|Ax) = (zy|x)
for all x ∈ B(H1).
Now we can define a linear map

H2 3 y 7−→ A∗y
df= zy ∈ H1.

A∗ is linear:
(A∗(αy1 + βy2)|x) = (αy1 + βy2|Ax) =

= ᾱ(y1|Ax) + β̄(y2|Ax) =

= ᾱ(A∗y1|x) + β̄(A∗y2|x) =

= (αA∗y1 + βA∗y2|x),

A∗ is continuous:
‖A∗y‖2 = (A∗y|A∗y) = (y|AA∗y) ≤

≤ ‖y‖‖A‖‖A∗y‖,
therefore

‖A∗y‖ ≤ ‖y‖‖A‖,
hence

‖A∗‖ ≤ ‖A‖.
2

Definition 5.3.1 The operator A∗ is called an adjoint operator of A.



5.4

The following proposition show the elementary properties of the map

∗ : B(H1,H2) → B(H2,H1).

Proposition 5.4.1 a) A∗∗ = A, so ∗ is an involution;
b) ‖A∗‖ = ‖A‖;
c) (λA + µB)∗ = λ̄A∗ + µ̄B∗, so ∗ is antilinear;
d) (AB)∗ = B∗A∗;
e) ‖A∗A‖ = ‖A‖2.

Proof
a) (y|A∗∗x) = (A∗y|x) = (y|Ax),
b) from the proof of the Proposition 5.3.1 we know that ‖A∗‖ ≤ ‖A‖, but ‖A‖ = ‖A∗∗‖ ≤ ‖A∗‖,
e) first, we have

‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2,

second, we have
‖A‖2 = sup

‖x‖≤1

‖Ax‖2 = sup
‖x‖≤1

(Ax|Ax) = sup
‖x‖≤1

(x|A∗Ax) ≤

≤ sup
‖x‖≤1

‖x‖‖A∗Ax‖ ≤ sup
‖x‖≤1

‖x‖‖A∗A‖‖x‖ ≤ ‖A∗A‖.

2

5.5

Definition 5.5.1 In the case H1 = H2 = H we define
a) if A = A∗, then A will be called a Hermitian operator;
b) if for all x ∈ H (x|Ax) ≥ 0, then A will be called a positive operator;
c) if AA∗ = A∗A, then A will be called a normal operator.

Proposition 5.5.1 Every positive operator is Hermitian.

2

5.6 Projection operators

Let as consider a closed subspace F ⊂ H. Then by the Theorem 2.3.1, for all x ∈ H we have
x = x‖ + x⊥, where x‖ ∈ F and x⊥ ∈ F⊥. Because this decomposition is unique, we may define the
following linear operator:

H 3 x 7→ PF x
df= x‖ ∈ H.

Proposition 5.6.1 a) PF ∈ B(H), i.e. PF is continuous;
b) P 2

F = PF , i.e. PF is idempotent;
c) P ∗F = PF , i.e. PF is Hermitian.

Proof
a) ‖PF x‖ = ‖x‖‖ ≤ ‖x‖ + x⊥‖ = ‖x‖,
c) (y|PF x) = (y‖ + y⊥|PF (x‖ + x⊥)) = (y‖ + y⊥|x‖) = (y‖|x‖) =
= (y‖|x‖ + x⊥) = (PF (y‖ + y⊥)|x‖ + x⊥) = (PF y|x). 2

Proposition 5.6.2 If P ∈ B(H) and P 2 = P = P ∗, then there exists a closed subspace F ⊂ H such
that P = PF .



Proof
We define a closed subspace in H:

F
df= {x ∈ H, Px = x}.

For every x ∈ H we have x = Px + (I − P )x, where I is the identity operator. We show that
(I − P )x ∈ F⊥:
Let f ∈ F then

(f |(I − P )x) = ((I − P )∗f |x) = ((I − P )f |x) = (f − Pf |x) = (0|x) = 0.

2

Proposition 5.6.3 If F,G, F + G are projection operators, then FG = GF = 0.

Proof

F + G = (F + G)2 = F 2 + FG + GF + G2 = F + G + FG + FG,

which gives that FG + GF = 0. Multiplying this by F we obtain:

0 = F (FG + GF )F = FGF + FGF = 2FGF = 2FG2F = 2(GF )∗GF.

Because ‖A∗A‖ = ‖A‖2, we conclude that FG = 0. 2

Proposition 5.6.4 Let E1, ..., En ∈ B(H) be a family of projection operators such that Ei 6= 0,
EiEj = 0 for i 6= j and

∑n
i=1 Ei = I. Then for λ1, . . . , λn ∈ C

‖
n∑

i=1

λiEi‖ = max{|λ1|, . . . , |λn|}.

Proof
For all x ∈ H, x =

∑n
i=1 Eix and every component of this sum is orthogonal to each other. Moreover,

if ‖x‖ ≤ 1 then
∑n

i=1 ‖Eix‖ ≤ 1. Now using the notation ai
df= ‖Eix‖2 we may calculate:

‖
n∑

i=1

λiEi‖2 = sup
‖x‖≤1

‖
n∑

i=1

λiEix‖2 = sup
‖x‖≤1

n∑
i=1

|λi|2‖Eix‖2 =

= sup
ai≥0,

∑
ai≤1

n∑
i=1

|λi|2ai = max{|λ1|2, . . . , |λn|2}.

2

5.7 Isometric and unitary operators

Definition 5.7.1 A linear operator U : H1 → H2 is called isometric if

∀x, y ∈ H1 (x|y)1 = (Ux|Uy)2,

if additionally U is ”onto,” then we call it a unitary operator.

Proposition 5.7.1 For every unitary operator U : H1 → H2 we have:
a) U ∈ B(H1,H2) and ‖U‖ = 1;
b) U∗U = I1 – identity operator in H1;
c) UU∗ = I2 – identity operator in H2.



2

Proposition 5.7.2 If U ∈ B(H1,H2), U∗U = I1 and UU∗ = I2 then U is unitary.

Proof
Obviously U is an isometric operator. To show that for all z ∈ H2 there exists x ∈ H1 such that
Ux = z we put x = U∗z. 2

Corollary 5.7.1 Operator U is unitary if and only if U∗ = U−1.

2

6 Unbounded operators

6.1

The operator Af
df= df

dt acting in L2([0, 1], dλ) is not an operator in the sense of the Definition 5.1.1,
therefore we need more general definition:

Definition 6.1.1 A linear map T from H1 to H2 defined on a linear subspace DT ⊂ H1 (T : H1 ⊃
DT → H2) is called an operator. DT is called a domain of the operator T .

Definition 6.1.2 If T, S are operators from H1 to H2 such that DT ⊂ DS and for all x ∈ DT

Tx = Sx, then we say that operator S is the extension of T and we write T ⊂ S.

6.2

Definition 6.2.1 An operator T is closed if for all sequences {xn} ⊂ DT we have

(xn → x, Txn → y) => (x ∈ DT , Tx = y) .

Definition 6.2.2 An operator T is closable if for all sequences {xn} ⊂ DT we have

(xn → 0 Txn → y) => (y = 0).

From every closable operator we can obtain a closed operator:

Definition 6.2.3 If T is a closable operator from H1 to H2, then we define:

DT

df= {x ∈ H1 : ∃{xn} ⊂ DT , {xn} & {Txn} are convergent} ,

Tx
df= lim

n→∞
Txn.

T is called a closure of T . Of course T ⊂ T .

6.3

Definition 6.3.1 For every operator T from H1 to H2 we define a subspace

GT
df= {(x, Tx) : x ∈ DT } ⊂ H1 ⊕H2,

which is called a graph of the operator T .

Proposition 6.3.1 A subset G ⊂ H1⊕H2 is a graph of some operator T if and only if G is a vector
subspace and G ∩ (H1 ⊕ {0}) = {0}.



Sketch of the proof

DT
df= {x ∈ H1 : ∃y ∈ H2 (x, y) ∈ G},

Tx
df= y.

2

Proposition 6.3.2 T is closed if and only if GT is closed.

2

Proposition 6.3.3 T is closable if and only if GT (the closure of GT ) is a graph of some operator.

Proof
=>

T ⊂ T <=> GT ⊂ GT => GT ⊂ GT => GT ∩ (H1 ⊕ {0}) = {0}.

<=
Let as consider a sequence {xn} ⊂ DT such that xn → 0 and Txn → y, then (0, y) ∈ GT , hence y = 0
which means that T is closable. 2

6.4

Analogically to bounded operators we want to introduce the notion of an adjoint operator. For the
operator T : H1 ⊃ DT → H2 we want to define an operator T ∗ which satisfies conditions:

T ∗ : H2 ⊃ DT∗ → H1,

∀x ∈ DT ∀y ∈ DT∗ (x|T ∗y)1 = (Tx|y)2. (4)

Since these two conditions are satisfied by T ∗ = 0, DT∗ = {0}, we need some kind of expansion.

Definition 6.4.1 Let T : H1 ⊃ DT → H2 and DT be dense in H1 i.e. DT = H1. Then the operator
T ∗ adjoint to T may be defined by:

DT∗
df= {y ∈ H2 : ∃x ∈ H1 ∀x′ ∈ DT (x′|x)1 = (Tx′|y)2 } ,

T ∗y
df= x.

Remark 6.4.1 If DT is not dense, then the equations (x′|x)1 = (Tx′|y)2 do not determine x unique,
so T ∗ cannot exists.

From now on we shall consider only operators with dense domains.

Definition 6.4.2 Let V : H1 ⊕H2 → H2 ⊕H1 be given by:

V (x, y) df= (−y, x).

Remark 6.4.2 V is a unitary operator.

Proposition 6.4.1 The condition (4) is equivalent to the inclusion:

GT∗ ⊂ V G⊥T .



Proof
It is enough to show that V −1GT∗ is orthogonal to GT :
For x ∈ DT and y ∈ DT∗ we have V −1(x, T ∗y) = (T ∗y,−x). Thus, the condition of orthogonality has
the form (x|T ∗y)1 + (Tx| − y)2 = 0, which is exactly (4). 2

Proposition 6.4.2 Let T be an operator. DT is dense in H1 if and only if V G⊥T is a graph.

Proof
(0, x) ∈ V G⊥T <=> (x, 0) ∈ G⊥

T <=> x⊥DT => x = 0 because DT is dense. 2

Corollary 6.4.1 We have an equivalent definition of the adjoint operator T ∗:
T ∗ is represented by the graph V G⊥T .

2

Corollary 6.4.2 For every operator T such that DT = H1 the operator T ∗ is closed.

2

Proposition 6.4.3 a) If the operator T is closable, then DT∗ is dense;
b) if DT∗ is dense, then T is closable and T ∗∗ = T .

Proof
a) Let y⊥DT∗ , so (y, 0)⊥GT∗ . Because V is unitary,

(y, 0) ∈ G⊥
T∗ = V G⊥⊥T = V GT , (5)

therefore (0, y) ∈ GT . Because T is closable, then GT is a graph, hence y = 0.
b) from the formula (5) we obtain

(0, y) ∈ GT <=> y⊥DT∗ .

Since DT∗ is dense, y = 0. Thus, GT is a graph.

GT∗∗ = V −1G⊥
T∗ = V −1(V G⊥T )⊥ = V −1V G⊥⊥T = GT = GT .

2

Corollary 6.4.3 If the operator T is closed, then T = T ∗∗.

2

Definition 6.4.3 Let H1 = H2. Then:
a) if T ⊂ T ∗, T is called symmetric;
b) if T = T ∗, T is called self-adjoint;
c) if T = T ∗, T is called essentially self-adjoint.

Corollary 6.4.4 T is symmetric if and only if for all x, y ∈ DT

(Tx|y) = (x|Ty).

2



6.5

The following theorem shows why the domain of an unbounded operator cannot be an entire Hilbert
space:

Theorem 6.5.1 If T is a closed operator from H1 to H2 and DT = H1 then T is bounded.

Proof
Let Pi, i = 1, 2, denote the orthogonal projection in H1 ⊕ H2 onto the i-th component. Of course
GT = {(x, Tx) : x ∈ H1} is a Hilbert space and P1 |GT

: GT → H1 is an isomorphism of Hilbert
spaces. Thus

x
(P1|GT

)−1

7−→ (x, Tx) P27−→ Tx

being the superposition of continuous maps, is continuous. 2

6.6

We denote by C(H1,H2) a set of all closed operators with the dense domain. If H1 = H2 = H, we
write C(H).
Note that C(H1,H2) is not a vector space, because, for example, T +(−T ) 6= 0, but T +(−T ) = 0 |DT

.

Theorem 6.6.1 If T ∈ C(H), then T ∗T is self-adjoint.

Proof
Since T is closed, GT is a Hilbert subspace of H ⊕H. So we have the orthogonal decomposition:

H ⊕H = GT ⊕G⊥
T = GT ⊕ V −1GT∗ . (6)

Thus, for every (x, 0) ∈ H ⊕H there exists u ∈ DT and v ∈ DT∗ such that

(x, 0) = (u, Tu) + V −1(v, T ∗v) = (u− T ∗v, Tu + v)

and therefore
x = u− T ∗v and v = −Tu,

hence Tu ∈ DT∗ and u ∈ DT∗T , which allows us to write −T ∗v = T ∗Tu. So we proved that

∀x ∈ H ∃u ∈ DT∗T x = u + T ∗Tu. (7)

Now we shall show that DT∗T is dense in H:
Let x⊥DT∗T . Then, by (7), we have

0 = (x|u) = (u|u) + (T ∗Tu|u) = (u|u) + (Tu|Tu) ≥ 0,

which implies u = 0, therefore x = 0.
It is easy to show that T ∗T is symmetric:

(x|T ∗Ty) = (Tx|Ty) = (T ∗Tx|y).

Finally, we shall show that D(T∗T )∗ ⊂ DT∗T :

Let x ∈ D(T∗T )∗ and y
df= (T ∗T )∗x. Then for each h ∈ DT∗T

(y|h) = ((T ∗T )∗x|h) = (x|T ∗Th). (8)

From (7) we know that there exists u ∈ DT∗T such that x + y = u + T ∗Tu.

(x− u|h + T ∗Th) = (x|h)− (u|h) + (x|T ∗Th)− (u|T ∗Th) =

= (x|h)− (u|h) + (y|h)− (T ∗Tu|h) = (x + y|h)− (u + T ∗Tu|h) = 0,

but h + T ∗Th runs over whole H (formula (7)) so x− u = 0. This means that x ∈ DT∗T . 2



7 Spectral measures and integrals

7.1 σ–algebras

Let X be any set and B a family of subsets of X.

Definition 7.1.1 B 6= ∅ is called a σ–algebra of sets if:
a) if A ∈ B, then X \A ∈ B;
b) if Ai ∈ B, i ∈ N, then ∪iAi ∈ B.

Definition 7.1.2 The σ–algebra of subsets generated by B0 is the smallest σ–algebra of sets which
contains B0.

Definition 7.1.3 Let X be a topological space. Then
a) the σ–algebra of Borel sets is the σ–algebra generated by the family of all open sets;
b) the σ–algebra of Baire sets is the σ–algebra generated by the family of all compact sets of the Gδ

type (countable intersection of open sets).

Remark 7.1.1 a) If X is a metric space, then every compact set is of the Gδ type;
b) (σ–algebra of Borel sets) ⊂ (σ–algebra of Baire sets);
c) if X = ∪∞n=1Kn, where Kn is compact, then
(σ–algebra of Borel sets) = (σ–algebra of Baire sets).

2

7.2 Measures

Definition 7.2.1 Let (X,B) be a set with a σ–algebra of sets. A measure is any map

µ : B −→ R+
df= [0,∞],

which satisfies the condition:

(Ai ∈ B, i ∈ N Ai ∩Aj = ∅, i 6= j) =>

(
µ(∪∞i=1Ai) =

∞∑
i=1

µ(Ai)

)
.

If additionally µ(X) = 1, then µ is called a probabilistic measure.

Definition 7.2.2 Let as consider (X,B). The function f : X → R is called B–measurable if

∀c ∈ R f−1(]−∞, c]) ∈ B.

Proposition 7.2.1 The measurable functions have the following properties:
a) they form an algebra (with ordinary pointwise addition and multiplication);
b) if {fn} is a sequence of measurable functions and for all x ∈ X, fn(x) → f(x), then f is measurable.

2

Definition 7.2.3 Baire(X) is, by definition, the set of all functions which are measurable with respect
to the σ–algebra of Baire sets.

Proposition 7.2.2 C0(X) ⊂ Baire(X), or, more precisely Baire(X) is the smallest family of func-
tions which contains C0(X) and is closed with respect to pointwise limits.

2



7.3 Integrals

Let as consider a set X with a σ–algebra of sets B and a measure µ.

Definition 7.3.1 Let χA be the characteristic function of the set A ∈ B. If µ(A) < ∞, then we
define: ∫

X

χA(x)µ(dx) df= µ(A).

Definition 7.3.2 A function f is called a B–measurable stair function if µ({x : f(x) 6= 0}) < ∞ and
the value set of f is finite.

We see that f is a linear combination of characteristic functions:

f =
n∑

i=1

αiχAi ,

thus, we can define the integral ∫
X

f(x)µ(dx) df=
n∑

i=1

αiµ(Ai).

The set of all B–measurable stair functions forms a vector structure and the integral is a positive
functional on this space, so we can apply the Stone procedure to expand the integral on Lp(µ) and to
construct Lp(µ) etc. Let as recall the following theorem from the general theory of the integral:

Theorem 7.3.1 Let X be a locally compact topological space and let φ : C0(X) → R be a linear map
which preserves positivity (i.e. if for all x ∈ X f(x) ≥ 0 then φ(f) ≥ 0). Then there exists a measure
µ on the σ–algebra of Baire sets such that

φ(f) =
∫

X

f(x)µ(dx).

2

Below we shall consider measures not necessarily positive i.e. the measures of the form µ1 − µ2 or
µ1 + iµ2 (complex), where µ1, µ2 are positive.

7.4 Spectral measures

Definition 7.4.1 Let (X,B) be a set with a σ–algebra of sets and let B(H) be the space of all bounded
operators in a Hilbert space H. A spectral measure is any map E : B → B(H) which satisfies the
following conditions:
a) for all A ∈ B, E(A) is a projection operator;
b) if Ai ∈ B, Ai ∩Aj = ∅, i, j ∈ N, i 6= j, x ∈ H, then

E (∪∞i=1Ai) x =
∞∑

i=1

E(Ai)x;

c) E(X) = I is the identity operator.

Remark 7.4.1 Note that in the condition b) we have a strong convergence, not an operator conver-
gence.

Proposition 7.4.1 Let E be a spectral measure and let A,B ∈ B. Then

E(A)E(B) = E(B)E(A) = E(A ∩B).



Proof
Let A′ = A−B, B′ = B −A and C ′ = A ∩B. We have

E(A) = E(A′) + E(C ′), E(B) = E(B′) + E(C ′).

Now, by the Proposition 5.6.3 we can calculate:

E(A)E(B) = E2(C ′) = E(C ′) = E(A ∩B).

2

Remark 7.4.2 If E : B → B(H) is a spectral measure and x ∈ H, then the map B 3 A 7→
(x|E(A)x) ∈ R+ is a measure, and we denote it by (x|Ex).

7.5 Spectral integrals

Definition 7.5.1 Let (X,B, E) be a set with a σ–algebra of sets and a spectral measure. For the
given stair function f(x) =

∑n
i=1 αiχAi(x), we define the spectral integral∫

X

f(x)E(dx) df=
n∑

i=1

αiE(Ai).

Proposition 7.5.1 The spectral integral has the following properties:
a) if f ≡ 1 then

∫
X

f(x)E(dx) = I;
b) for all α, β ∈ C and f1, f2 being stair functions∫

X

(αf1 + βf2)(x)E(dx) = α

∫
X

f1(x)E(dx) + β

∫
X

f2(x)E(dx);

c) for all f1, f2 being stair functions∫
X

f1(x)f2(x)E(dx) =
(∫

X

f1(x)E(dx)
)(∫

X

f2(x)E(dx)
)

;

d)
∫

X
f(x)E(dx) =

(∫
X

f(x)E(dx)
)∗;

e) ‖
∫

X
f(x)E(dx)‖ ≤ supx∈X |f(x)|.

Proof
b) Taking into account the definition and the fact that the integral does not depend on the represen-
tation of the stair function, i.e. n∑

i=1

αiχAi
=

m∑
j=1

βjχBj

 =>

 n∑
i=1

αiE(Ai) =
m∑

j=1

βjE(Bj)

 ,

the proof is obvious. c) For f1 =
∑n

i=1 αiχAi
and f2 =

∑m
j=1 βiχBj

we have

f1f2 =
∑
i,j

αiβjχAi
χBj

=
∑
i,j

αiβjχAi∩Bj
,

which gives ∫
X

f1(x)f2(x)E(dx) =
∑
i,j

αiβjE(Ai ∩Bj) =
∑
i,j

αiβjE(Ai)E(Bj).

e) The proof follows directly from the Proposition 5.6.4. 2



Corollary 7.5.1 If {fn} is a sequence of stair functions which is uniformly convergent to the function
f then it follows from e) that the sequence

∫
X

fn(x)E(dx) is convergent and its limit depends only on
f .

2

Definition 7.5.2 If {fn} is a sequence of stair functions which is uniformly convergent to the function
f , then we define ∫

X

f(x)E(dx) df= lim
n→∞

∫
X

fn(x)E(dx).

Proposition 7.5.2 Every bounded B–measurable function f may be conformly aproximated with stair
functions.

Proof
Since f is bounded we may cover the set f(X) by ∪n

i=1∆i, where |∆i| < ε. Now, defining:

Ai
df= {x ∈ X : f(x) ∈ ∆i},

and

fε
df=

n∑
i=1

χAi
,

we have
sup
x∈X

|f(x)− fε(x)| ≤ ε.

2

Theorem 7.5.1 Let X be a compact space and let φ : C(X) → B(H) be a map which satisfies the
following conditions:
a) φ is linear;
b) φ is multiplicative i.e. φ(f1f2) = φ(f1)φ(f2);
c) φ is symmetric i.e. φ(f̄) = (φ(f))∗;
d) φ(1) = I.
Then there exists a spectral measure E on the σ–algebra of Baire sets such that for all f ∈ C(X)

φ(f) =
∫

X

f(x)E(dx).

Proof
Step 1.
Let M

df= supx∈X |f(x)|. Then M2 − f̄f ≥ 0, so there exists a nonnegative function g such that

M2 = f̄f + ḡg.

Acting on this equality by φ, we obtain

M2I = φ(f)∗φ(f) + φ(g)∗φ(g)

and taking the average value over v ∈ H we have

M2(v|v) = (v|φ(f)∗φ(f)v) + (v|φ(g)∗φ(g)v) =

= (φ(f)v|φ(f)v) + (φ(g)v|φ(g)v) = ‖φ(f)v‖2 + ‖φ(g)v‖2.



Finally we obtain
‖φ(f)‖ ≤ sup

x∈X
|f(x)|.

Step 2.
If f ≥ 0 then φ(f) ≥ 0. Since because f = f̄

1
2 f

1
2 , φ(f) = φ(f

1
2 )∗φ(f

1
2 ).

Step 3.
For each u ∈ H we define the map

C(X) 3 f 7→ (u|φ(f)u) ∈ C.

This map assigns positive numbers to positive functions, so by the Theorem 7.3.1 there exists a
measure µu such that

(u|φ(f)u) =
∫

X

f(x)µu(dx).

Using the formula

(u|Av) =
1
4

3∑
k=0

ik(iku + v|A(iku + v)),

we obtain a complex measure µu,v, which satisfies

(u|φ(f)v) =
∫

X

f(x)µu,v(dx).

Step 4.
Now we may extend φ on a whole family of bounded Baire functions, denoted by Baireb(X). Because
X is compact, 1 ≡ f ∈ L1(µu,v), so for all f ∈ Baireb(X) we define

(u|φ̃(f)v) df=
∫

X

f(x)µu,v(dx).

As an exercise we propose to prove that this definition is good i.e.
i) the right-hand side of this definition is antilinear in u and continous in v,
ii) φ̃ fulfil the conditions a)–d). For example, b) follows from the Lebesgue theorem on majority
convergence.
Step 5.
We define the map

B 3 A 7→ E(A) df= φ̃(χA) ∈ B(H).

We prove that this is a spectral measure:
i) E(A) is a projection operator:

E(A)2 = φ̃(χA)φ̃(χA) = φ̃(χ2
A) = φ̃(χA) = E(A),

E(A)∗ = φ̃(χA)∗ = φ̃(χ̄A) = φ̃(χA) = E(A),

ii) E(X) = φ̃(1) = φ(1) = I,
iii) countable additivity of E in strong topology:
Let A = ∪∞i=1Ai where Ai ∩Aj = ∅ for i 6= j. For each u ∈ H we define a sequence {wN} by

wN
df=

N∑
i=1

E(Ai)u.

To show that this sequence is convergent, it should be noted that the series

∞∑
i=1

‖E(Ai)u‖2



is convergent. It follows from the fact that partial sums for this series are bounded by ‖u‖2. Since
the vectors E(Ai)u are orthogonal, we have

‖wN − wM‖2 = ‖
M∑

i=N+1

E(Ai)u‖2 =
M∑

i=N+1

‖E(Ai)u‖2,

so {wN} is convergent.
Finally, from the fact that for all x ∈ X

χA(x) = lim
N→∞

N∑
i=1

χAi(x),

we have

(u|E(A)v) =
∞∑

i=1

(u|E(Ai)v),

which gives

lim
N→∞

wN =
∞∑

i=1

E(Ai)u = E(∪∞i=1Ai)u.

Step 6.
Finally, we have that for every stair function f

φ̃(f) =
∫

X

f(x)E(dx) (9)

and, by the continuity, this is true for every f ∈ Baireb(X). 2

Definition 7.5.3 (Spectral integral for arbitrary Baire function.) Let f ∈ Baire(X) and {fn}
be a sequence in Baireb(X) such that for all x ∈ X

|fn(x)| ≤ |f(x)| fn(x) → f(x).

We define an unbounded operator by∫
X

f(x)E(dx)u df= lim
n→∞

∫
X

fn(x)E(dx)u,

with a domain consisting of those u ∈ H for which there exists the limit on the right side of this
definition.

7.6

Directly from the definitions of spectral measure and integral we obtain:

Proposition 7.6.1 If φ : X1 → X2 is a measurable mapping and E is a spectral measure on X1, then

F (∆) df= E(φ−1(∆))

is spectral measure on X2 and∫
X2

f(x2)F (dx2) =
∫

X1

f(φ(x1))E(dx1).

2



8 Commutative C∗–algebras

8.1

Definition 8.1.1 A is a C∗–algebra if:
a) A is a vector space over C;
b) there is in A a bilinear and associative multiplication

A×A 3 (a, b) 7→ ab ∈ A,

(if additionally there exists 1 ∈ A such that for all a ∈ A 1a = a1 = a, we call A the algebra with
identity);
c) there exists an antylinear map A 3 a 7→ a∗ ∈ A such that for all a, b ∈ A

a∗∗ = a, (ab)∗ = b∗a∗,

(it follows from this that 1∗ = 1);
d) A is a normed space such that for all a, b ∈ A

‖ab‖ ≤ ‖a‖‖b‖, ‖a∗‖ = ‖a‖;

e) A is complete in this norm;
f) for all a ∈ A

‖a∗a‖ = ‖a‖2;
g) if additionally for all a ∈ A, ab = ba, then A is called a commutative C∗–algebra.

Definition 8.1.2 Element a ∈ A is called invertible if there exists a−1 ∈ A, such that aa−1 = a−1a =
1. In opposite case, a is called noninvertible.

8.2 Examples

a) the set of bounded operators in a Hilbert space is a C∗–algebra;
b) if A ∈ H and A∗ = A, then the closure of the space of all polinomials of A is a commutative
C∗–algebra;
c) if Λ is a compact topological space, then C(Λ) with

f∗
df= f̄ , ‖f‖ df= sup

λ∈Λ
|f(λ)|,

is a commutative C∗–algebra. It turns aut that every commutative C∗–algebra is of this form, more
precisly, we have the following theorem which will be proved in this section:

Theorem 8.2.1 (Gelfand) Let A be a commutative C∗–algebra. There exists a compact space Λ
and a map A 3 a 7→ â ∈ C(Λ) such that for all a, b ∈ A, r, s ∈ C and λ ∈ Λ:
a) ̂(ra + sb)(λ) = râ(λ) + sb̂(λ);
b) âb(λ) = â(λ)b̂(λ);
c) â∗(λ) = â(λ);
d) ‖a‖ = supλ∈Λ |â(λ)|;
e) {â : a ∈ A} = C(Λ).
Shortly, we have an isomorphism of C∗–algebras.

Definition 8.2.1 A character of the C∗–algebra A is any map A 3 a 7→ χ(a) ∈ C such that for all
a, b ∈ A and r, s ∈ C:
a) χ(ra + sb) = rχ(a) + sχ(b);
b) χ(ab) = χ(a)χ(b);
c) χ(a∗) = χ(a);
d) χ(1) = 1.



Remark 8.2.1 The notion of character is important because we shall define Λ as the space of all
characters of A equipped in some topology and we shall put:

â(χ) df= χ(a).

From now on A will denote a commutative C∗–algebra with identity.

8.3 Ideals

Definition 8.3.1 A subset I ⊂ A is called an ideal if:
a) I is a vector subspace in A;
b) for all a ∈ I and b ∈ A we have ab ∈ I;
c) 1 6∈ I (i.e. I 6= A).

Corollary 8.3.1 If I is an ideal, then A/I is an algebra, where

(a + I) + (b + I) df= a + b + I,

(a + I)(b + I) df= ab + I.

2

Proposition 8.3.1 Every element of each ideal is noninvertible and every noninvertible element in
A is in some ideal.

Proof
Let a, a−1 ∈ I, then 1 ∈ I, which is a contradiction.
For noninvertible a ∈ A we define the ideal

I df= {ab : b ∈ A}.

2

8.4 Maximal ideals

Definition 8.4.1 M is called a maximal ideal if:
a) M is an ideal;
b) if there exists an ideal I, such that M⊂ I, then M = I.

Proposition 8.4.1 Each ideal is included in some maximal ideal.

Proof
Follows from the Kuratowski – Zorn lema. 2

Corollary 8.4.1 If a ∈ A is noninvertible, then there exists a maximal ideal M such that a ∈M.

2

Proposition 8.4.2 If M is a maximal ideal, then A/M' C.

Proof
Follows directly from the Gelfand–Mazur theorem, which will be proved later. 2

Corollary 8.4.2 The map A 3 a 7→ a +M∈ A/M' C is a character.

2



8.5

Proposition 8.5.1 If ‖1− a‖ < 1, then a is invertible.

Proof
Let as consider the series

∑∞
n=0(1 − a)n. It is convergent, so by putting a = 1 − (1 − a) we see that

this series is the inversion of a. 2

Proposition 8.5.2 The closure of an ideal is an ideal too.

Proof
Let as consider an ideal I, then its closure Ī is a vector subspace in A.
Let a = lim an ∈ Ī, an ∈ I, then for all b ∈ A we have ba = lim ban ∈ Ī.
1 6∈ Ī follows from the Proposition 8.5.1. 2

Corollary 8.5.1 Every maximal ideal is closed.

2

8.6

Definition 8.6.1 a) The spectrum of an element a ∈ A is the set

Sp a
df= {λ ∈ C : a− λ1 is noninvertible };

b) the resolvent set of a:
%(a) df= C \ Sp a.

Proposition 8.6.1 a) If λ ∈ C is such that |λ| > ‖a‖, then λ ∈ %(a);
b) %(a) is open in C;
c) the map

%(a) 3 λ 7→ R(a, λ) df= (a− λ1)−1 ∈ A

is holomorphic. R(a, λ) is called the resolvent of a;
d) Sp a 6= ∅.

Proof
a) Since |λ| > ‖a‖, the series

− 1
λ

∞∑
n=0

an

λn
(10)

is convergent. Moreover

(a− λ1)

(
− 1

λ

∞∑
n=0

an

λn

)
= −

∞∑
n−0

an+1

λn+1
+

∞∑
n=0

an

λn
= 1.

Thus we have

R(a, λ) = (a− λ1)−1 = − 1
λ

∞∑
n=0

an

λn
.

b) Let λ0 ∈ %(a), e.i. (a− λ01)−1 exists. Let as consider λ from some neighbourhood of λ0. Then

(a− λ1)−1 = ((a− λ01) + (λ0 − λ)1)−1 =

=
{
(a− λ01)

[
1− (λ− λ0)(a− λ01)−1

]}−1
=



= (a− λ01)−1
∞∑

n=0

[
(a− λ01)−1(λ− λ0)

]n
.

This series is convergent if |λ − λ0| < ‖a − λ01‖−1. Finally we see that each point in %(a) has a
neighbourhood in this set.
c) The proof is obvious because R(a, λ) is given by the series (10).
d) Assuming that Spa = ∅, we have R(a, λ) defined on the whole C as a holomorphic function, which
by (10) satisfies

R(a, λ) → 0 if |λ| → ∞.

Thus R(a, λ) ≡ 0 which is contradiction. 2

Corollary 8.6.1 a) Sp a is compact;
b) we have the following equality

sup
λ∈Sp a

|λ| = ‖a‖.

Proof
b) Because the series (10) is convergent, then

lim
n→∞

n

√
‖an‖
|λ|n

< 1,

which implies that
sup

λ∈Sp a
|λ| = lim

n→∞
n
√
‖an‖

is the radius of the minimal circle containing Sp a.
But ‖a∗a‖ = ‖a‖2, so

‖a2‖2 = ‖(a∗)2a2‖ = ‖a∗aa∗a‖ = ‖a∗a‖2 = ‖a‖4,
therefore ‖a2‖ = ‖a‖2 and

‖a2k

‖ = ‖a‖2
k

.

2

Another corollary from the Proposition 8.6.1 is the following theorem

Theorem 8.6.1 (Gelfand, Mazur) If every a ∈ A \ {0} is invertible, then

A = {λ1 : λ ∈ C}.

Proof
For a ∈ A \ {0} there exists λ ∈ Sp a such that a− λ1 is noninvertible, so a− λ1 = 0. 2

8.7

Let f be an entire function on C i.e. f(z) =
∑∞

n=0 cnzn and this series is convergent for all z ∈ C.
For all a ∈ A we define

f(a) df=
∞∑

i=0

cnan.

It is easy to show that

f(a) = − 1
2πi

∮
f(ζ)(a− ζ1)−1dζ,

where the integral is taken over the contour including Sp a, moreover

Sp f(a) = f(Sp a).



Proposition 8.7.1 If a = a∗, then Sp a ⊂ R.

Proof
Let as consider

b
df= eia =

∞∑
n=0

(ia)n

n!
.

We have b∗b = e−iaeia = e0 = 1, so ‖b‖ = 1, which gives

Sp b ⊂ {λ ∈ C : |λ| ≤ 1}.

But Sp b = eiSp a, so
(z ∈ Sp a) => (Imz ≥ 0),

moreover Sp b∗ = e−iSp a, so
(z ∈ Sp a) => (Imz ≤ 0).

2

8.8

Proposition 8.8.1 If a ∈ A and M is a maximal ideal in A, then there exists exactly one complex
number λM such that

a− λM1 ∈M.

Proof
Let as consider the C∗–algebra A/M with the norm given by

‖a +M‖ df= inf
a′∈a+M

‖a′‖.

Because M is maximal, then A/M satisfies the conditions of the Gelfand – Mazur theorem, thus

A/M' C.

2

Definition 8.8.1 Let M denote the set of all maximal ideals in A. We define the map called the
Gelfand transformation

A 3 a 7→ â ∈ {complex functions on M},

given by
â(M) df= λM.

Theorem 8.8.1 For all a, b ∈ A:
a) ̂(a + b) = â + b̂;
b) âb = âb̂;
c) 1̂ = 1 – constant function on M;
d) â(M) = Sp a;
e) defining

‖â‖ df= sup
M∈M

|â(M|,

we have that ‖a‖ = ‖â‖;
f) â∗ = ¯̂a;
g) â(M) = 0 if and only if a ∈M.



Proof
b) ab− â(M)b̂(M)1 = (a− â(M)1)b + â(M)(b− b̂(M)1) ∈M.
d) if λ ∈ Sp a, then there exists a maximal ideal M such that a − λ1 ∈ M, so λ = â(M). Thus
Sp a ⊂ â(M).
Now let λ ∈ â(M) which means that there exists a maximal ideal M such that λ = â(M), so a− λ1
is noninvertible i.e. λ ∈ Sp a. Thus â(M) ⊂ Sp a. e) we have

‖â‖ = sup
M∈M

|â(M)| = sup
λ∈Sp a

|λ| = ‖a‖.

f) the proof follows from the observation that

b = b∗ => b̂(M) ∈ R

and that a = 1
2 (a + a∗) + i 1

2i (a− a∗) and a∗ = 1
2 (a + a∗)− i 1

2i (a− a∗). 2

8.9 Topology on M

To prove the spectral theorem, it is enough to limit our considerations to the case when A is generated
by a finite number of elements a1, ..., an ∈ A i.e. A is the closure of the space of all polinomials of ai,
i = 1, . . . , n.

Proposition 8.9.1 If M1,M2 ∈ M and âi(M1) = ai(M2), i = 1, ..., n, then M1 = M2.

Proof
Follows from the fact that

M = {a ∈ A : â(M) = 0}.

2

Corollary 8.9.1 We have the injection

M 3M 7→ (a1(M), . . . , an(M)) ∈ Cn. (11)

2

Definition 8.9.1 The topology on M is defined as a pull-back, by the map (11), of the usual topology
from Cn.

Theorem 8.9.1 a) M is compact;
b) for all a ∈ A the function â is continuous;
c) each continous function on M is of the form â, for some a ∈ A.

Proof
a) M is bounded because |âi(M)| ≤ ‖ai‖.
We shall show that M is closed:
Let {Mk} be a Couchy sequence in M, so there exists (λ1, . . . , λn) ∈ Cn such that for all i = 1, . . . , n,

lim
k→∞

âi(Mk) = λi.

We must show that there exists the maximal ideal M∞ such that âi(M∞) = λi for all i. It follows
from the proposition 8.9.1 that for all a ∈ A there exists λa ∈ C such that

λa = lim
k→∞

â(Mk).



Thus we have the multiplicative and linear map

A 3 a 7→ λa ∈ C,

which leads to the definition:
M∞

df= {a ∈ A : λa = 0}.

It is easy to see that M∞ is an ideal. Because codim M∞ = 1, we obtain that M∞ is a maximal
ideal.
Let zi

df= âi(M∞), then ai − zi1 ∈M∞ i.e.

0 = λai−zi1 = λi − zi.

Finally we have
lim

k→∞
Mk = M∞ ∈ M.

b) All âi are continuous, so all its polinomials and limits of polinomials (because convergence in A
implies uniform convergence of the Gelfand transformations).
c) The proof follows directly from the Stone–Weierstrass theorem. 2

Remark 8.9.1 In this way we completed the proof of the Gelfand theorem 8.2.1.

9 Spectral theorems

9.1 Spectral theorem for Hermitian operators

Let as assume that A is a C∗–subalgebra in B(H) generated by a Hermitian operator A.

Theorem 9.1.1 If A ∈ B(H) is a Hermitian operator, then there exists a spectral measure E on
Sp A, such that

A =
∫

Sp A

λE(dλ).

Proof
The inverse Gelfnad trasformation is an example of an isomorphism between C(M) and A which
satisfies the conditions of the Theorem 7.5.1. This implies that there exists a spectral measure E′ on
M such that for all B ∈ A we have

B =
∫
M

B̂(λ)E′(dλ),

where B̂ is the Gelfand transformation of B. Moreover, due to the Theorem 8.8.1 d) and the Propo-
sition 8.9.1, we may identify M with Sp A ⊂ R.
Taking into account the Proposition 7.6.1, we see that there exists a spectral measure E on SpA such
that

B =
∫

Sp A

B̂(Â−1(λ))E(dλ), (12)

where Â−1 is the inverse map to the Gelfand transformation of the generator of A, i.e. Â−1 : Sp A →
M. Putting A in (12) we complete the proof. 2

This proof show that we may also formulate the spectral theorem for unitary operators or, more
generally for normal operators. If an operator A is not normal, then we cannot imbed A into some
commutative algebra.



9.2 Cayley transformation

Now let T be an unbounded operator in a Hilbert space H and let DT denote the domain of T .

Proposition 9.2.1

(T = T ∗) => ((T ± iI)DT = H).

Proof
Step 1.
We shall prove that (T ± iI)DT is dense in H:
Let as assume that there exist 0 6= u⊥(T ± iI)DT , which means that for all v ∈ DT we have
(u|(T ± iI)v) = 0, so (u|Tv) = (±iu|v), which implies that u ∈ DT∗ and T ∗u = iu. But T ∗ = T , so
Tu = iu, which iscontradiction.
Step 2.
We shall prove that (T ± iI)DT is closed in H:
Because T = T ∗, then for each v ∈ DT we can directly calculate that

‖(T ± iI)v‖2 = ‖Tv‖2 + ‖v‖2. (13)

Now let h ∈ H, then there exists a sequence {vn} such that

(T + iI)vn → h if n →∞.

Thus, by (13), {vn} and {Tvn} are Couchy sequences, so there exist v, w ∈ H such that

vn → v and Tvn → w.

Moreover, T is closed (because T = T ∗), then Tv = w.
Finally (T + iI)v = h. 2

Corollary 9.2.1 T ± iI is invertible.

Proof
It follows from (13) that ker(T ± iI) = {0}. 2

Definition 9.2.1 The Cayley transformation of an operator T = T ∗ is the operator

UT
df= (T − iI)(T + iI)−1.

Proposition 9.2.2 UT has the following properties:
a) the domain of UT is the whole H;
b) UT (H) = H;
c) for all h ∈ H we have ‖UT h‖ = ‖h‖.

2

Corollary 9.2.2 UT is a unitary operator.

2



9.3 Idea of a proof of the spectral theorem for self-adjoint operators

In particular, we have the spectral representation of UT :

UT =
∫
|λ|=1

λEUT
(dλ).

The main idea is as follows:
Using the spectral representation of UT we want to obtain the representation of T due to the inverse
Cayley transformation:

T = −i(UT − I)−1(UT + I)

Thus we propose

T =
∫
|λ|=1

−i
λ + 1
λ− 1

EUT
(dλ),

where, of course

−i
λ + 1
λ− 1

∈ R.

It is easy to check that the mapping

S1 − {1} 3 λ 7→ C−1(λ) df= −i
λ + 1
λ− 1

∈ R

is ”onto.” So we may define the spectral measure on R:

ET (∆) df= EUT
(C(∆)).

Now, by the Proposition 7.6.1 we obtain:

T =
∫

S1
C−1(λ)EUT

(dλ) =
∫
R

µEUT
(C(dµ)) =

=
∫
R

µET (dµ),

where µ = C−1(λ).

9.4 The spectral theorem for self-adjoint operators

Theorem 9.4.1 If T is a self-adjoint operator in a Hilbert space H, then there exists a spectral
measure ET on the real line R such that:

T =
∫ +∞

−∞
µET (dµ).

Proof
For u ∈ DT we have (from the Cayley transformation) the following formula

UT (T + iI)u = (T − iI)u (14)

or, in another form
(UT − I)Tu = −i(UT + I)u. (15)

Let as consider the equation (UT − I)v = 0. By the Proposition 9.2.1 let x ∈ DT be such that
v = (T + iI)x. Using (14) we obtain UT v = (T − iI)x. But our equation gives UT v = v. Therefore



(T + iI)x = (T − iI)x, which means ix = −ix or x = 0, so v = 0. Concluding, the equation (15)
determines Tu in a unique manner.

It will be convenient to define

Cε
df= {λ ∈ S1 : | arg λ| ≥ ε}

and
Hε

df= EUT
(Cε)H.

For u ∈ Hε ∩DT we have a good defined bounded operator:

Tu =
∫

Cε

−i
λ + 1
λ− 1

EUT
(dλ)u,

which, for our u, we may write in the following form:

Tu =
∫

S1
−i

λ + 1
λ− 1

EUT
(dλ)u,

(of course, S1 = C0).
We shall check that this formula satisfies the equation (15):

(UT − I)
∫

S1
−i

λ + 1
λ− 1

EUT
(dλ)u =

=
∫

S1
(λ− 1)EUT

(dλ)
∫

S1
−i

λ + 1
λ− 1

EUT
(dλ)u =

= −i

∫
S1

(λ + 1)EUT
(dλ)u = −i(UT + I)u.

This allows us to put for u ∈ DT :

Tu
df= lim

ε→0

∫
Cε

−i
λ + 1
λ− 1

EUT
(dλ)u. (16)

First of all we check that this Tu satisfies (15) too:
Since the operator UT − I is continous, it commutes with the operation of taking limit

(UT − I) lim
ε→0

∫
Cε

−i
λ + 1
λ− 1

EUT
(dλ)u =

= lim
ε→0

∫
Cε

−i(λ + 1)EUT
(dλ)u

(∗)
=

= −i

∫
C0

(λ + 1)EUT
(dλ)u = −i(UT + I)u,

where the equality (*) follows from the fact that:

lim
ε→0

‖
∫

C0\Cε

(λ + 1)EUT
(dλ)u‖2 = (u|EUT

({1})u) = 0,

because EUT
({1}) = 0 (i.e. there does not exist a vector 0 6= v ∈ H, such that UT v = v).

To prove that the limit in (16) exists, it should be noted that we may rewrite (15) in the following
form: ∫

C0

(λ− 1)EUT
(dλ)Tu = −i

∫
C0

(λ + 1)EUT
(dλ)u.



Now, because
∫

Cε
(λ− 1)−1EUT

(dλ) a bounded operator,∫
Cε

1EUT
(dλ)Tu =

∫
Cε

(λ− 1)−1EUT
(dλ)

∫
C0

(λ− 1)EUT
(dλ)Tu =

=
∫

Cε

−i
λ + 1
λ− 1

EUT
(dλ)u.

Thua the limit exists and by the Proposition 7.6.1 we have for all u ∈ DT :

Tu =
∫ +∞

−∞
µET (dµ)u,

where µ = −iλ+1
λ−1 . Thus we have

T ⊂
∫ +∞

−∞
µET (dµ).

It is easy to see that
∫ +∞
−∞ µET (dµ) is symmetric, then, because T = T ∗, we have:

T =
∫ +∞

−∞
µET (dµ).

2


